gym-examples 3.0.772__py3-none-any.whl → 3.0.774__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.772"
8
+ __version__ = "3.0.774"
@@ -150,7 +150,7 @@ class WSNRoutingEnv(gym.Env):
150
150
  self.number_of_steps += 1
151
151
  self.steps += 1
152
152
  # rewards = [-max_reward] * self.n_sensors
153
- reward_init = np.array([- max_reward] * input_dim)
153
+ reward_init = 0
154
154
  rewards = [reward_init] * self.n_sensors
155
155
  dones = [False] * self.n_sensors
156
156
  for i, action in enumerate(actions):
@@ -219,7 +219,7 @@ class WSNRoutingEnv(gym.Env):
219
219
 
220
220
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
221
221
 
222
- # rewards[i] = self.compute_attention_rewards(rewards[i]) # Compute the attention-based reward
222
+ rewards[i] = self.compute_attention_rewards(rewards[i]) # Compute the attention-based reward
223
223
 
224
224
  # Integrate the mobility of the sensors
225
225
  # self.integrate_mobility()
@@ -231,9 +231,9 @@ class WSNRoutingEnv(gym.Env):
231
231
 
232
232
  self.get_metrics()
233
233
 
234
- # rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
235
- rewards = self.compute_attention_reward(rewards) # Compute the attention-based reward
236
- # rewards = np.sum(rewards) # Sum the rewards of all the sensors
234
+ rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
235
+ # rewards = self.compute_attention_reward(rewards) # Compute the attention-based reward
236
+ rewards = np.sum(rewards) # Sum the rewards of all the sensors
237
237
 
238
238
  for i in range(self.n_sensors):
239
239
  if not dones[i]:
@@ -470,43 +470,43 @@ class WSNRoutingEnv(gym.Env):
470
470
  return np.clip(normalized_throughput, 0, 1)
471
471
 
472
472
 
473
- # def compute_attention_rewards(self, reward):
474
- # '''
475
- # Compute the attention-based rewards
476
- # '''
477
- # rewards_i = torch.tensor(reward, dtype=torch.double)
478
- # return net(rewards_i)
473
+ def compute_attention_rewards(self, reward):
474
+ '''
475
+ Compute the attention-based rewards
476
+ '''
477
+ rewards_i = torch.tensor(reward, dtype=torch.double)
478
+ return net(rewards_i)
479
479
 
480
480
 
481
- def compute_attention_reward(self, rewards):
482
- '''
483
- Compute the attention-based reward for the network with Q, V, and K matrices
481
+ # def compute_attention_reward(self, rewards):
482
+ # '''
483
+ # Compute the attention-based reward for the network with Q, V, and K matrices
484
484
 
485
- Input:
486
- - rewards: list of rewards for each sensor
487
- Output:
488
- - final_reward: final reward for the network
489
- '''
490
- # dimension of the sensor embedding
491
- d = len(rewards[0])
485
+ # Input:
486
+ # - rewards: list of rewards for each sensor
487
+ # Output:
488
+ # - final_reward: final reward for the network
489
+ # '''
490
+ # # dimension of the sensor embedding
491
+ # d = len(rewards[0])
492
492
 
493
- # All sensors are represented by their raw rewards
494
- query_vector = np.array([max_reward] * d) # Basically, the target is the base station
493
+ # # All sensors are represented by their raw rewards
494
+ # query_vector = np.array([max_reward] * d) # Basically, the target is the base station
495
495
 
496
- # Similarities between the query vector and the rewards
497
- similarities = [np.dot(query_vector, reward) for reward in rewards]
496
+ # # Similarities between the query vector and the rewards
497
+ # similarities = [np.dot(query_vector, reward) for reward in rewards]
498
498
 
499
- # Similarities scaling
500
- similarities = [similarity / np.sqrt(d) for similarity in similarities]
499
+ # # Similarities scaling
500
+ # similarities = [similarity / np.sqrt(d) for similarity in similarities]
501
501
 
502
- # Softmax operation
503
- denominator = sum([np.exp(similarity) for similarity in similarities])
504
- attention_weights = [np.exp(similarity) / denominator for similarity in similarities]
502
+ # # Softmax operation
503
+ # denominator = sum([np.exp(similarity) for similarity in similarities])
504
+ # attention_weights = [np.exp(similarity) / denominator for similarity in similarities]
505
505
 
506
- # Weighted sum of the rewards
507
- final_reward = sum([attention_weight * reward for attention_weight, reward in zip(attention_weights, rewards)])
506
+ # # Weighted sum of the rewards
507
+ # final_reward = sum([attention_weight * reward for attention_weight, reward in zip(attention_weights, rewards)])
508
508
 
509
- return np.sum(final_reward)
509
+ # return np.sum(final_reward)
510
510
 
511
511
 
512
512
  def integrate_mobility(self):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.772
3
+ Version: 3.0.774
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=WxbKGX0L4GOaCrxFOZ8gT29ZvO0QSyD4YLoQBMM_NGM,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=BcUIueHx0HDVXOwNUq-DOTuiRPpmnKRwuiP71ZPlx8U,26919
4
+ gym_examples-3.0.774.dist-info/METADATA,sha256=ZZiB5qX6itzvc4yZgLK5FpCW4aPTMEtyuCjrJSKaxj4,412
5
+ gym_examples-3.0.774.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.774.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.774.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=cx4oUpQUqBd33c8NwakCIA6-mn1WlAR-6VrWE9vk4rw,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=CEI6uM78EVY5QEXjslxfaTXDP-wTSklrM9yghckQ-vk,26926
4
- gym_examples-3.0.772.dist-info/METADATA,sha256=d0VVwwj9LwPD3GmPrJ1XD7yn73uQ_tg6RDwzoFcSOeQ,412
5
- gym_examples-3.0.772.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.772.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.772.dist-info/RECORD,,