gym-examples 3.0.769__py3-none-any.whl → 3.0.771__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.769"
8
+ __version__ = "3.0.771"
@@ -150,7 +150,7 @@ class WSNRoutingEnv(gym.Env):
150
150
  self.number_of_steps += 1
151
151
  self.steps += 1
152
152
  # rewards = [-max_reward] * self.n_sensors
153
- reward_init = np.array([0] * input_dim)
153
+ reward_init = np.array([- max_reward] * input_dim)
154
154
  rewards = [reward_init] * self.n_sensors
155
155
  dones = [False] * self.n_sensors
156
156
  for i, action in enumerate(actions):
@@ -219,6 +219,8 @@ class WSNRoutingEnv(gym.Env):
219
219
 
220
220
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
221
221
 
222
+ # rewards[i] = self.compute_attention_rewards(rewards[i]) # Compute the attention-based reward
223
+
222
224
  # Integrate the mobility of the sensors
223
225
  # self.integrate_mobility()
224
226
 
@@ -231,6 +233,7 @@ class WSNRoutingEnv(gym.Env):
231
233
 
232
234
  # rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
233
235
  rewards = self.compute_attention_reward(rewards) # Compute the attention-based reward
236
+ # rewards = np.sum(rewards) # Sum the rewards of all the sensors
234
237
 
235
238
  for i in range(self.n_sensors):
236
239
  if not dones[i]:
@@ -472,8 +475,7 @@ class WSNRoutingEnv(gym.Env):
472
475
  # Compute the attention-based rewards
473
476
  # '''
474
477
  # rewards_i = torch.tensor(reward, dtype=torch.double)
475
- # rewards_i = rewards_i.unsqueeze(0) # Add batch dimension
476
- # return net(rewards_i).item()
478
+ # return net(rewards_i)
477
479
 
478
480
 
479
481
  def compute_attention_reward(self, rewards):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.769
3
+ Version: 3.0.771
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=RbdE0YwrLSAqeAvXUmj2eOfSVERmLe_xP34l5_GGTFc,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=CEI6uM78EVY5QEXjslxfaTXDP-wTSklrM9yghckQ-vk,26926
4
+ gym_examples-3.0.771.dist-info/METADATA,sha256=dzdtTI0gYHEF8BR04nWmRW-xtF235JsM9Q7GyIbxj7U,412
5
+ gym_examples-3.0.771.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.771.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.771.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=JrDpTNbLnzE4_62ux2BYcurQHhbfV4ZjpaK9TfNmgvM,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=O2DXjVkYubXn5aLNeCf2AwQ1FUZlwp8R2xYCR1MDqCk,26806
4
- gym_examples-3.0.769.dist-info/METADATA,sha256=6oumqB5XQ0yhGHDK7G4E5yj2JeK0TxSqFqb3XUsUjHw,412
5
- gym_examples-3.0.769.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.769.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.769.dist-info/RECORD,,