gym-examples 3.0.756__py3-none-any.whl → 3.0.758__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.756"
8
+ __version__ = "3.0.758"
@@ -51,8 +51,8 @@ class ScalarAttentionModel(nn.Module):
51
51
  scalar_output = self.output_layer(attention_output)
52
52
  return scalar_output
53
53
 
54
- # net = ScalarAttentionModel(input_dim)
55
- # net = net.double() # Convert the weights to Double
54
+ net = ScalarAttentionModel(input_dim)
55
+ net = net.double() # Convert the weights to Double
56
56
 
57
57
  class WSNRoutingEnv(gym.Env):
58
58
 
@@ -212,7 +212,7 @@ class WSNRoutingEnv(gym.Env):
212
212
 
213
213
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
214
214
  # Calculate final reward
215
- # rewards[i] = self.compute_attention_rewards(rewards[i])
215
+ rewards[i] = self.compute_attention_rewards(rewards[i])
216
216
  # rewards[i] = np.mean(rewards[i])
217
217
 
218
218
  # Integrate the mobility of the sensors
@@ -226,10 +226,7 @@ class WSNRoutingEnv(gym.Env):
226
226
  self.get_metrics()
227
227
 
228
228
  # rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
229
-
230
- rewards = self.compute_attention_rewards(rewards, self.n_sensors)
231
- print(f"Rewards: {rewards}")
232
- # rewards = np.mean(rewards)
229
+ rewards = np.mean(rewards)
233
230
 
234
231
  for i in range(self.n_sensors):
235
232
  if not dones[i]:
@@ -466,20 +463,14 @@ class WSNRoutingEnv(gym.Env):
466
463
  return np.clip(normalized_throughput, 0, 1)
467
464
 
468
465
 
469
- def compute_attention_rewards(self, rewards, n_sensors):
466
+ def compute_attention_rewards(self, reward):
470
467
  '''
471
468
  Compute the attention-based rewards
472
469
  '''
473
- net = ScalarAttentionModel(n_sensors)
474
- net = net.double() # Convert the weights to Double
475
- final_reward = []
476
- for i in range(len(rewards[0])):
477
- rewards_i = [reward[i] for reward in rewards]
478
- rewards_i = torch.tensor(rewards_i, dtype=torch.double)
479
- rewards_i = rewards_i.unsqueeze(0) # Add batch dimension
480
- final_reward.append(net(rewards_i).item())
470
+ rewards_i = torch.tensor(reward, dtype=torch.double)
471
+ rewards_i = rewards_i.unsqueeze(0) # Add batch dimension
481
472
 
482
- return np.mean(final_reward)
473
+ return np.mean(net(rewards_i).item())
483
474
 
484
475
 
485
476
  # def compute_attention_reward(self, rewards):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.756
3
+ Version: 3.0.758
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=f70ODc3g1vDL3YyDihgU_517hCz3Vcr6WxdqCFajnvM,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=v3XsnNUpmtjIGDHR9iOWRQJsVEnbv7qyxWOlJ1_H55A,26558
4
+ gym_examples-3.0.758.dist-info/METADATA,sha256=eUk0935bbVmyaBfSmUNA5YLhtONmtxJ1TCvgDlzG9JE,412
5
+ gym_examples-3.0.758.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.758.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.758.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=4C-dUiI0EI9rNFua-VrPKyk7hyZgishTEyhirm0iCnY,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=YUK-nwlyXttjds6OmBvOTirF9yskrVNzSmI3e_5_8fI,26995
4
- gym_examples-3.0.756.dist-info/METADATA,sha256=yx3aFTcjtAKIzw_5IU9gV2UoMQaVeI85-4Hn6Kngj6Q,412
5
- gym_examples-3.0.756.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.756.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.756.dist-info/RECORD,,