gym-examples 3.0.753__py3-none-any.whl → 3.0.755__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.753"
8
+ __version__ = "3.0.755"
@@ -30,7 +30,7 @@ base_back_up_dir = "results/data/"
30
30
  max_reward = 1 # maximum reward value when the sensors sent data to the base station. The opposite value is when the sensors perform an unauthorized action
31
31
 
32
32
  class ScalarAttentionModel(nn.Module):
33
- def __init__(self, input_dim=4, output_dim=1):
33
+ def __init__(self, input_dim, output_dim=1):
34
34
  super(ScalarAttentionModel, self).__init__()
35
35
  # Initialize GaussianAdaptiveAttention
36
36
  self.ga_attention = GaussianAdaptiveAttention(
@@ -51,8 +51,8 @@ class ScalarAttentionModel(nn.Module):
51
51
  scalar_output = self.output_layer(attention_output)
52
52
  return scalar_output
53
53
 
54
- net = ScalarAttentionModel(input_dim)
55
- net = net.double() # Convert the weights to Double
54
+ # net = ScalarAttentionModel(input_dim)
55
+ # net = net.double() # Convert the weights to Double
56
56
 
57
57
  class WSNRoutingEnv(gym.Env):
58
58
 
@@ -227,7 +227,7 @@ class WSNRoutingEnv(gym.Env):
227
227
 
228
228
  # rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
229
229
 
230
- rewards = self.compute_attention_rewards(rewards)
230
+ rewards = self.compute_attention_rewards(rewards, self.n_sensors)
231
231
  print(f"Rewards: {rewards}")
232
232
  # rewards = np.mean(rewards)
233
233
 
@@ -466,17 +466,20 @@ class WSNRoutingEnv(gym.Env):
466
466
  return np.clip(normalized_throughput, 0, 1)
467
467
 
468
468
 
469
- def compute_attention_rewards(self, rewards):
469
+ def compute_attention_rewards(self, rewards, n_sensors):
470
470
  '''
471
471
  Compute the attention-based rewards
472
472
  '''
473
- print(f"Before torch tensor operation\nRewards type: {type(rewards)}, Rewards shape: {np.array(rewards).shape}")
474
- rewards = torch.tensor(rewards, dtype=torch.double)
475
- print(f"After torch tensor operation\nRewards type: {type(rewards)}, Rewards shape: {rewards.shape}")
476
- rewards = rewards.unsqueeze(0) # Add batch dimension
477
- print(f"After unsqueeze, rewards type: {type(rewards)}, rewards shape: {rewards.shape}")
478
- final_reward = net(rewards)
479
- return final_reward
473
+ net = ScalarAttentionModel(n_sensors)
474
+ net = net.double() # Convert the weights to Double
475
+ final_reward = []
476
+ for i in range(len(rewards[0])):
477
+ rewards_i = [reward[i] for reward in rewards]
478
+ rewards_i = torch.tensor(rewards_i, dtype=torch.double)
479
+ rewards_i = rewards_i.unsqueeze(0) # Add batch dimension
480
+ final_reward.append(net(rewards_i).item())
481
+
482
+ return final_reward.mean().item()
480
483
 
481
484
 
482
485
  # def compute_attention_reward(self, rewards):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.753
3
+ Version: 3.0.755
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=815cyqeKkNC7ftFt8Vtj07athkj36c2STNlFxmRcqlc,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=h56qfOsV7mjaQi9eaZ1Mc92X322sGXPZV_KYUeUgiRE,27000
4
+ gym_examples-3.0.755.dist-info/METADATA,sha256=2wawIwJy9MsQXABHUT0Oq63fUBw2mtHxKRw2Ipv-R_Q,412
5
+ gym_examples-3.0.755.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.755.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.755.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=HPc6ReDuVSkSVN757l9_qqSk5jUFLgJf2quo1k9tnnw,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=DX1Ejs3qj417OAFgCi4Y2Bq7kFX8wUFp3flGeX0IZPI,27008
4
- gym_examples-3.0.753.dist-info/METADATA,sha256=9kxvKD1m4MgAjh6PeOfoWA6DlEgIdMlnsvC_mttYQxU,412
5
- gym_examples-3.0.753.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.753.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.753.dist-info/RECORD,,