gym-examples 3.0.753__py3-none-any.whl → 3.0.754__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.753"
8
+ __version__ = "3.0.754"
@@ -470,13 +470,14 @@ class WSNRoutingEnv(gym.Env):
470
470
  '''
471
471
  Compute the attention-based rewards
472
472
  '''
473
- print(f"Before torch tensor operation\nRewards type: {type(rewards)}, Rewards shape: {np.array(rewards).shape}")
474
- rewards = torch.tensor(rewards, dtype=torch.double)
475
- print(f"After torch tensor operation\nRewards type: {type(rewards)}, Rewards shape: {rewards.shape}")
476
- rewards = rewards.unsqueeze(0) # Add batch dimension
477
- print(f"After unsqueeze, rewards type: {type(rewards)}, rewards shape: {rewards.shape}")
478
- final_reward = net(rewards)
479
- return final_reward
473
+ final_reward = []
474
+ for i in range(len(rewards[0])):
475
+ rewards_i = [reward[i] for reward in rewards]
476
+ rewards_i = torch.tensor(rewards_i, dtype=torch.double)
477
+ rewards_i = rewards_i.unsqueeze(0) # Add batch dimension
478
+ final_reward.append(net(rewards_i))
479
+
480
+ return final_reward.mean().item()
480
481
 
481
482
 
482
483
  # def compute_attention_reward(self, rewards):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.753
3
+ Version: 3.0.754
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=AfgfcIhRLQ13gj-B6lbC4iTEtYaTWCO14JRFDumF1dA,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=I2px13TJyNn93cCQkO22hI5WuIJo_HT3v0ZfBqk7_0k,26856
4
+ gym_examples-3.0.754.dist-info/METADATA,sha256=OrruAdPUHtFXCbUzZNRWkDB8MHpR2zMNqpGNY5ZFHOw,412
5
+ gym_examples-3.0.754.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.754.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.754.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=HPc6ReDuVSkSVN757l9_qqSk5jUFLgJf2quo1k9tnnw,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=DX1Ejs3qj417OAFgCi4Y2Bq7kFX8wUFp3flGeX0IZPI,27008
4
- gym_examples-3.0.753.dist-info/METADATA,sha256=9kxvKD1m4MgAjh6PeOfoWA6DlEgIdMlnsvC_mttYQxU,412
5
- gym_examples-3.0.753.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.753.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.753.dist-info/RECORD,,