gym-examples 3.0.729__py3-none-any.whl → 3.0.731__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.729"
8
+ __version__ = "3.0.731"
@@ -150,7 +150,8 @@ class WSNRoutingEnv(gym.Env):
150
150
  self.number_of_steps += 1
151
151
  self.steps += 1
152
152
  # rewards = [-max_reward] * self.n_sensors
153
- rewards = [[0] * input_dim] * self.n_sensors
153
+ reward_init = np.array([0] * input_dim)
154
+ rewards = [reward_init] * self.n_sensors
154
155
  dones = [False] * self.n_sensors
155
156
  for i, action in enumerate(actions):
156
157
  if self.remaining_energy[i] <= 0 or self.number_of_packets[i] <= 0:
@@ -381,7 +382,7 @@ class WSNRoutingEnv(gym.Env):
381
382
  reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
382
383
  reward_number_of_packets = self.compute_reward_number_of_packets(action)
383
384
 
384
- rewards_energy = [reward_angle, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
385
+ rewards_energy = np.array([reward_angle, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets])
385
386
 
386
387
  #-- rewards related to the performance metrics
387
388
  reward_latency = self.compute_reward_latency()
@@ -389,10 +390,8 @@ class WSNRoutingEnv(gym.Env):
389
390
  reward_network_throughput = self.compute_reward_network_throughput()
390
391
  reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
391
392
 
392
- rewards_performance = [reward_latency, reward_network_throughput, reward_packet_delivery_ratio]
393
+ rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
393
394
 
394
- # return np.concatenate((rewards_energy, rewards_performance))
395
- # return np.array([reward_consumption_energy, reward_dispersion_remaining_energy])
396
395
  return rewards_energy
397
396
 
398
397
 
@@ -488,7 +487,7 @@ class WSNRoutingEnv(gym.Env):
488
487
  d = len(rewards[0])
489
488
 
490
489
  # All sensors are represented by their raw rewards
491
- query_vector = [max_reward] * d # Basically, the target is the base station
490
+ query_vector = np.array([max_reward] * d) # Basically, the target is the base station
492
491
 
493
492
  # Similarities between the query vector and the rewards
494
493
  similarities = [np.dot(query_vector, reward) for reward in rewards]
@@ -499,10 +498,11 @@ class WSNRoutingEnv(gym.Env):
499
498
  # Softmax operation
500
499
  denominator = sum([np.exp(similarity) for similarity in similarities])
501
500
  attention_weights = [np.exp(similarity) / denominator for similarity in similarities]
502
- print(f"\n======================================================================================\n")
503
- print("Attention weights: ", attention_weights)
504
- print(f"========================================================================================\n")
501
+
505
502
  # Weighted sum of the rewards
503
+ print("\n================================================")
504
+ print(f"Attention weights: {attention_weights}")
505
+ print("================================================\n")
506
506
  final_reward = sum([attention_weight * reward for attention_weight, reward in zip(attention_weights, rewards)])
507
507
 
508
508
  return final_reward
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.729
3
+ Version: 3.0.731
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=jJoCEACwjCrI_EPKubjRPy9qTbNlqRoUdG3Zth8puHU,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=i4RWxY3lpB77IrhZvsykybbtbOXKM_NZ_ffVxwLuiDk,26786
4
+ gym_examples-3.0.731.dist-info/METADATA,sha256=-B0PQSK3Z93N1tw10CPGX4NBN3YzEgZkRGDZYvteqFE,412
5
+ gym_examples-3.0.731.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.731.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.731.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=kthabVfu_M3x5cgmCdRpVrNJQRTdgJvheunzBETS8Yo,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=FOkeETp0cSqxiGlZSE_XcwIgJ607Aw0UhBnpM9DjX0g,26954
4
- gym_examples-3.0.729.dist-info/METADATA,sha256=InZnXCPqHDHsxtXz8gZBaYpdADmlsplhF-t5XM4tYM8,412
5
- gym_examples-3.0.729.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.729.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.729.dist-info/RECORD,,