gym-examples 3.0.727__py3-none-any.whl → 3.0.728__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.727"
8
+ __version__ = "3.0.728"
@@ -150,7 +150,7 @@ class WSNRoutingEnv(gym.Env):
150
150
  self.number_of_steps += 1
151
151
  self.steps += 1
152
152
  # rewards = [-max_reward] * self.n_sensors
153
- rewards = [0] * self.n_sensors
153
+ rewards = [[0] * input_dim] * self.n_sensors
154
154
  dones = [False] * self.n_sensors
155
155
  for i, action in enumerate(actions):
156
156
  if self.remaining_energy[i] <= 0 or self.number_of_packets[i] <= 0:
@@ -381,7 +381,7 @@ class WSNRoutingEnv(gym.Env):
381
381
  reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
382
382
  reward_number_of_packets = self.compute_reward_number_of_packets(action)
383
383
 
384
- rewards_energy = np.array([reward_angle, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets])
384
+ rewards_energy = [reward_angle, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
385
385
 
386
386
  #-- rewards related to the performance metrics
387
387
  reward_latency = self.compute_reward_latency()
@@ -389,7 +389,7 @@ class WSNRoutingEnv(gym.Env):
389
389
  reward_network_throughput = self.compute_reward_network_throughput()
390
390
  reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
391
391
 
392
- rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
392
+ rewards_performance = [reward_latency, reward_network_throughput, reward_packet_delivery_ratio]
393
393
 
394
394
  # return np.concatenate((rewards_energy, rewards_performance))
395
395
  # return np.array([reward_consumption_energy, reward_dispersion_remaining_energy])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.727
3
+ Version: 3.0.728
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=_4a0uWUNYWJUbE3qDRnjR3v6dR59m-KEnWcp3-7CDes,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=x_SW_nOLr2k-EPFtkWu86GwLaMgZoizwx0ai6gUKydo,26679
4
+ gym_examples-3.0.728.dist-info/METADATA,sha256=JzKg9Bkshk35opbb0gXkMyfQspFPsauZKzGlayJ2BSs,412
5
+ gym_examples-3.0.728.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.728.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.728.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=h_dtwINVIrEt5_XXPBY-2icWp5Xw0lrsCLrNL-XFbME,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=x0uwg7p60Ji0xehxNAnI4ENkyFNNzBf4EcIcVp3MFjA,26685
4
- gym_examples-3.0.727.dist-info/METADATA,sha256=ArMpkbaISwT5Fa41rSCMYpJi0JmQPysF91n-PMVi3Xw,412
5
- gym_examples-3.0.727.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.727.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.727.dist-info/RECORD,,