gym-examples 3.0.70__py3-none-any.whl → 3.0.71__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.70"
9
+ __version__ = "3.0.71"
@@ -88,7 +88,7 @@ class WSNRoutingEnv(gym.Env):
88
88
 
89
89
  def step(self, actions):
90
90
  self.steps += 1
91
- rewards = [0] * self.n_sensors
91
+ rewards = [-1] * self.n_sensors
92
92
  dones = [False] * self.n_sensors
93
93
  for i, action in enumerate(actions):
94
94
  if action not in range(self.n_sensors + 1):
@@ -165,8 +165,6 @@ class WSNRoutingEnv(gym.Env):
165
165
 
166
166
  self.get_metrics()
167
167
 
168
- # rewards = [r / len(rewards) for r in rewards]
169
-
170
168
  return self._get_obs(), rewards, dones, {}
171
169
 
172
170
  def _get_obs(self):
@@ -224,7 +222,8 @@ class WSNRoutingEnv(gym.Env):
224
222
  # Normalize the angle
225
223
  normalized_angle = abs(angle) / np.pi
226
224
 
227
- return np.clip(1 - normalized_angle, 0, 1)
225
+ # return np.clip(1 - normalized_angle, 0, 1)
226
+ return np.clip(- normalized_angle, -1, 1)
228
227
 
229
228
  def compute_reward_distance(self, i, action):
230
229
  '''
@@ -237,7 +236,8 @@ class WSNRoutingEnv(gym.Env):
237
236
  # Normalize the distance to the next hop
238
237
  normalized_distance_to_next_hop = distance / self.coverage_radius
239
238
 
240
- return np.clip(1 - normalized_distance_to_next_hop, 0, 1)
239
+ # return np.clip(1 - normalized_distance_to_next_hop, 0, 1)
240
+ return np.clip(-normalized_distance_to_next_hop, -1, 1)
241
241
 
242
242
  def compute_reward_consumption_energy(self, i, action):
243
243
  '''
@@ -258,8 +258,9 @@ class WSNRoutingEnv(gym.Env):
258
258
  max_total_energy = max_transmission_energy + max_reception_energy
259
259
  normalized_total_energy = total_energy / (max_total_energy + self.epsilon)
260
260
 
261
- return np.clip(1 - normalized_total_energy, 0, 1)
262
-
261
+ # return np.clip(1 - normalized_total_energy, 0, 1)
262
+ return np.clip(- normalized_total_energy, -1, 1)
263
+
263
264
  def compute_reward_dispersion_remaining_energy(self):
264
265
  '''
265
266
  Compute the reward based on the standard deviation of the remaining energy
@@ -269,8 +270,9 @@ class WSNRoutingEnv(gym.Env):
269
270
  max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
270
271
  normalized_dispersion_remaining_energy = dispersion_remaining_energy / (max_dispersion_remaining_energy + self.epsilon)
271
272
 
272
- return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
273
-
273
+ # return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
274
+ return np.clip(- normalized_dispersion_remaining_energy, -1, 1)
275
+
274
276
  def compute_reward_number_of_packets(self, action):
275
277
  '''
276
278
  Compute the reward based on the number of packets of the receiver
@@ -281,7 +283,8 @@ class WSNRoutingEnv(gym.Env):
281
283
  else:
282
284
  normalized_number_of_packets = self.number_of_packets[action] / (max_number_of_packets + self.epsilon)
283
285
 
284
- return np.clip(1 - normalized_number_of_packets, 0, 1)
286
+ # return np.clip(1 - normalized_number_of_packets, 0, 1)
287
+ return np.clip(- normalized_number_of_packets, -1, 1)
285
288
 
286
289
  def compute_individual_rewards(self, i, action):
287
290
  '''
@@ -315,7 +318,8 @@ class WSNRoutingEnv(gym.Env):
315
318
  max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
316
319
  normalized_dispersion_remaining_energy = dispersion_remaining_energy / (max_dispersion_remaining_energy + self.epsilon)
317
320
 
318
- return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
321
+ # return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
322
+ return np.clip(- normalized_dispersion_remaining_energy, -1, 1)
319
323
 
320
324
  def network_reward_consumption_energy(self):
321
325
  '''
@@ -326,7 +330,8 @@ class WSNRoutingEnv(gym.Env):
326
330
  max_total_energy = self.n_sensors * initial_energy
327
331
  normalized_total_energy = total_energy / (max_total_energy + self.epsilon)
328
332
 
329
- return np.clip(1 - normalized_total_energy, 0, 1)
333
+ # return np.clip(1 - normalized_total_energy, 0, 1)
334
+ return np.clip(- normalized_total_energy, -1, 1)
330
335
 
331
336
  def compute_reward_packet_delivery_ratio(self):
332
337
  '''
@@ -343,7 +348,8 @@ class WSNRoutingEnv(gym.Env):
343
348
  max_latency = self.n_sensors * self.steps
344
349
  normalized_latency = self.total_latency / (max_latency + self.epsilon)
345
350
 
346
- return np.clip(1 - normalized_latency, 0, 1)
351
+ # return np.clip(1 - normalized_latency, 0, 1)
352
+ return np.clip(- normalized_latency, -1, 1)
347
353
 
348
354
  def compute_reward_network_throughput(self):
349
355
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.70
3
+ Version: 3.0.71
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=g7xElPNRTjXJyIh9gGRHxZuNWJ8yoQ4m9wG2vxXXR8U,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=6ozl-jBiWyPwRaUvgMAshbydZn56lg77VGqYI8SqT2c,20451
4
+ gym_examples-3.0.71.dist-info/METADATA,sha256=O34q71LQmiTyPg53ntHDZAKanPvL9Xjd2IPpJKiASok,411
5
+ gym_examples-3.0.71.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.71.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.71.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=90AkOI4OSX_jWRjyWz1Qwg43aeQY7I_e5zr_0JEf9-o,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=BNBpC74P-CK4F1rA59PTgYTUjMyGZclmJmDE4D4YBuA,20007
4
- gym_examples-3.0.70.dist-info/METADATA,sha256=fPNX7FRPRX9T1KVRK2E14UEUBVgwbhe1EQGd5sqU4O0,411
5
- gym_examples-3.0.70.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.70.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.70.dist-info/RECORD,,