gym-examples 3.0.662__py3-none-any.whl → 3.0.664__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.662"
8
+ __version__ = "3.0.664"
@@ -58,8 +58,9 @@ class WSNRoutingEnv(gym.Env):
58
58
 
59
59
  ALGO_NAME = "" # Global flag to control the algorithm name
60
60
  gym_examples_current_version = "" # Global flag to control the gym_examples version
61
+ coefficients = [] # Global flag for the weights of all the agents
61
62
 
62
- def __init__(self, n_sensors = 90, coverage_radius=(upper_bound - lower_bound) * 3/20, num_timesteps = None, version = None):
63
+ def __init__(self, n_sensors = 30, coverage_radius=(upper_bound - lower_bound) * 3/20, num_timesteps = None, version = None):
63
64
 
64
65
  super(WSNRoutingEnv, self).__init__()
65
66
  # Create filenames to save statistics for evaluation
@@ -97,6 +98,8 @@ class WSNRoutingEnv(gym.Env):
97
98
  self.reset()
98
99
 
99
100
  def reset(self):
101
+ print("\n============================================")
102
+ print(f"Episode count: {self.episode_count}")
100
103
  if self.number_of_steps > 30000: # Change 30000 to a parameter taken from args or kwargs
101
104
  self.episode_returns.append(self.episode_return)
102
105
  observations = self._get_obs()
@@ -140,6 +143,9 @@ class WSNRoutingEnv(gym.Env):
140
143
 
141
144
  self.get_metrics()
142
145
 
146
+ if self.episode_count > 1:
147
+ print(f"Episode return: {self.episode_return}")
148
+
143
149
  return self._get_obs()
144
150
 
145
151
 
@@ -231,6 +237,7 @@ class WSNRoutingEnv(gym.Env):
231
237
  dones = bool(np.all(dones))
232
238
 
233
239
  self.episode_return += rewards
240
+
234
241
  return self._get_obs(), rewards, dones, self.get_metrics()
235
242
 
236
243
 
@@ -258,6 +265,20 @@ class WSNRoutingEnv(gym.Env):
258
265
  def get_avail_actions(self):
259
266
  return [list(range(self.n_sensors + 1)) for _ in range(self.n_sensors)]
260
267
 
268
+ def build_weigths_agents(self, coefficients):
269
+ '''
270
+ We would like to compute the similarity score between the agents and the base station:
271
+ For this, we consider that each agent is represented by a vector constituted of:
272
+ - number of packets after the action
273
+ - remaining energy after the action
274
+ - distance to the base station
275
+ The vector of the base station is constituted of:
276
+ - number of packets after the action: all the times, we consider is equal to 0
277
+ - remaining energy after the action: all the times, we consider is equal to initial_energy
278
+ - distance to the base station: all the times, we consider is equal to 0
279
+ '''
280
+ vector_referee = [0, 0, 1] # Vector of the base station
281
+
261
282
 
262
283
  def update_sensor_energies(self, i, delta_energy):
263
284
  self.remaining_energy[i] -= delta_energy
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.662
3
+ Version: 3.0.664
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=nf1oj2PGof0ZMExWKFk05GXrJ4fwkgUTbCkIKEv3nr8,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=tc7KB1SIzx-7Ee1kd3Qttf1LhmvBy5GdqZTa1MFldaI,26363
4
+ gym_examples-3.0.664.dist-info/METADATA,sha256=H_DM3iYfLc7732DNu4rfn_h-keZQ_IXycxctRHh9pHM,412
5
+ gym_examples-3.0.664.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.664.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.664.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=C4ZusYlaub4xCgqI-7ThaSoyGMMSTO1oJxBIyMCyTMw,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=CELBjrF9LYLOItWv7jr8CoUyH8nWRvrFwxzfVl96Tbs,25280
4
- gym_examples-3.0.662.dist-info/METADATA,sha256=VRNcl8g9c_I3hj0-i3QbjSCUQYtmYDzH8m02HrrFxqA,412
5
- gym_examples-3.0.662.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.662.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.662.dist-info/RECORD,,