gym-examples 3.0.596__py3-none-any.whl → 3.0.597__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.596"
8
+ __version__ = "3.0.597"
@@ -59,7 +59,7 @@ class WSNRoutingEnv(gym.Env):
59
59
  ALGO_NAME = "" # Global flag to control the algorithm name
60
60
  gym_examples_current_version = "" # Global flag to control the gym_examples version
61
61
 
62
- def __init__(self, n_sensors = 50, coverage_radius=(upper_bound - lower_bound) * 5/20, num_timesteps = None, version = None):
62
+ def __init__(self, n_sensors = 30, coverage_radius=(upper_bound - lower_bound) * 3/20, num_timesteps = None, version = None):
63
63
 
64
64
  super(WSNRoutingEnv, self).__init__()
65
65
  # Create filenames to save statistics for evaluation
@@ -97,7 +97,7 @@ class WSNRoutingEnv(gym.Env):
97
97
  self.reset()
98
98
 
99
99
  def reset(self):
100
- if self.number_of_steps > 10000: # Change 30000 to a parameter taken from args or kwargs
100
+ if self.number_of_steps > 30000: # Change 30000 to a parameter taken from args or kwargs
101
101
  self.episode_returns.append(self.episode_return)
102
102
  observations = self._get_obs()
103
103
  metrics = self.get_metrics()
@@ -208,8 +208,8 @@ class WSNRoutingEnv(gym.Env):
208
208
 
209
209
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
210
210
  # Calculate final reward
211
- # rewards[i] = self.compute_attention_rewards(rewards[i])
212
- rewards[i] = np.mean(rewards[i])
211
+ rewards[i] = self.compute_attention_rewards(rewards[i])
212
+ # rewards[i] = np.mean(rewards[i])
213
213
 
214
214
  # Integrate the mobility of the sensors
215
215
  # self.integrate_mobility()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.596
3
+ Version: 3.0.597
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=tGsOojn1TiXymIPAmxXamO0nvLbeXWWzyIa51xAkeC8,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=jdZOQx0LnxSSwvtQ4VpfpK2JX7W49xZLy32t-3e-Lvo,25280
4
+ gym_examples-3.0.597.dist-info/METADATA,sha256=Gkic3eXe1TSnPY_BnEKYpoUno6OWBqGuwewAGcXeirM,412
5
+ gym_examples-3.0.597.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.597.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.597.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=n1zo_WrjQSbJH-fpdWNwB5WwWW8piTwgua6zYRGrRtc,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=oNZaBWMPqMecYu6OUvRiBsVYcsVTyd-4I-9nwf5xkhs,25280
4
- gym_examples-3.0.596.dist-info/METADATA,sha256=DDJwv-9ocPe_LC3-UdizS0KIe3mhyMsi1M_c8Tm2_GU,412
5
- gym_examples-3.0.596.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.596.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.596.dist-info/RECORD,,