gym-examples 3.0.596__py3-none-any.whl → 3.0.597__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +4 -4
- {gym_examples-3.0.596.dist-info → gym_examples-3.0.597.dist-info}/METADATA +1 -1
- gym_examples-3.0.597.dist-info/RECORD +7 -0
- gym_examples-3.0.596.dist-info/RECORD +0 -7
- {gym_examples-3.0.596.dist-info → gym_examples-3.0.597.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.596.dist-info → gym_examples-3.0.597.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -59,7 +59,7 @@ class WSNRoutingEnv(gym.Env):
|
|
59
59
|
ALGO_NAME = "" # Global flag to control the algorithm name
|
60
60
|
gym_examples_current_version = "" # Global flag to control the gym_examples version
|
61
61
|
|
62
|
-
def __init__(self, n_sensors =
|
62
|
+
def __init__(self, n_sensors = 30, coverage_radius=(upper_bound - lower_bound) * 3/20, num_timesteps = None, version = None):
|
63
63
|
|
64
64
|
super(WSNRoutingEnv, self).__init__()
|
65
65
|
# Create filenames to save statistics for evaluation
|
@@ -97,7 +97,7 @@ class WSNRoutingEnv(gym.Env):
|
|
97
97
|
self.reset()
|
98
98
|
|
99
99
|
def reset(self):
|
100
|
-
if self.number_of_steps >
|
100
|
+
if self.number_of_steps > 30000: # Change 30000 to a parameter taken from args or kwargs
|
101
101
|
self.episode_returns.append(self.episode_return)
|
102
102
|
observations = self._get_obs()
|
103
103
|
metrics = self.get_metrics()
|
@@ -208,8 +208,8 @@ class WSNRoutingEnv(gym.Env):
|
|
208
208
|
|
209
209
|
self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
|
210
210
|
# Calculate final reward
|
211
|
-
|
212
|
-
rewards[i] = np.mean(rewards[i])
|
211
|
+
rewards[i] = self.compute_attention_rewards(rewards[i])
|
212
|
+
# rewards[i] = np.mean(rewards[i])
|
213
213
|
|
214
214
|
# Integrate the mobility of the sensors
|
215
215
|
# self.integrate_mobility()
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=tGsOojn1TiXymIPAmxXamO0nvLbeXWWzyIa51xAkeC8,166
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=jdZOQx0LnxSSwvtQ4VpfpK2JX7W49xZLy32t-3e-Lvo,25280
|
4
|
+
gym_examples-3.0.597.dist-info/METADATA,sha256=Gkic3eXe1TSnPY_BnEKYpoUno6OWBqGuwewAGcXeirM,412
|
5
|
+
gym_examples-3.0.597.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.597.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.597.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=n1zo_WrjQSbJH-fpdWNwB5WwWW8piTwgua6zYRGrRtc,166
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=oNZaBWMPqMecYu6OUvRiBsVYcsVTyd-4I-9nwf5xkhs,25280
|
4
|
-
gym_examples-3.0.596.dist-info/METADATA,sha256=DDJwv-9ocPe_LC3-UdizS0KIe3mhyMsi1M_c8Tm2_GU,412
|
5
|
-
gym_examples-3.0.596.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.596.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.596.dist-info/RECORD,,
|
File without changes
|
File without changes
|