gym-examples 3.0.49__py3-none-any.whl → 3.0.51__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +5 -2
- {gym_examples-3.0.49.dist-info → gym_examples-3.0.51.dist-info}/METADATA +1 -1
- gym_examples-3.0.51.dist-info/RECORD +7 -0
- gym_examples-3.0.49.dist-info/RECORD +0 -7
- {gym_examples-3.0.49.dist-info → gym_examples-3.0.51.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.49.dist-info → gym_examples-3.0.51.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -10,7 +10,7 @@ import torch.nn as nn
|
|
10
10
|
import torch.nn.functional as F
|
11
11
|
|
12
12
|
# Define the network parameters for the final reward function
|
13
|
-
# input_dim =
|
13
|
+
# input_dim = 4 # length of the individual rewards vector
|
14
14
|
output_dim = 1 # final reward
|
15
15
|
|
16
16
|
Eelec = 50e-9 # energy consumption per bit in joules
|
@@ -122,6 +122,7 @@ class WSNRoutingEnv(gym.Env):
|
|
122
122
|
self.packet_latency[i] = 0
|
123
123
|
|
124
124
|
rewards[i] = self.compute_individual_rewards(i, action)
|
125
|
+
# rewards[i] = np.ones(input_dim) # Reward for transmitting data to the base station
|
125
126
|
dones[i] = True
|
126
127
|
else:
|
127
128
|
distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
|
@@ -362,8 +363,10 @@ class WSNRoutingEnv(gym.Env):
|
|
362
363
|
'''
|
363
364
|
Compute the attention-based rewards
|
364
365
|
'''
|
366
|
+
input_dim = len(rewards)
|
365
367
|
rewards = torch.tensor(rewards, dtype=torch.double)
|
366
|
-
|
368
|
+
print(f"input_dim_modified: {len(rewards)}")
|
369
|
+
net = Attention(input_dim, output_dim)
|
367
370
|
net = net.double() # Convert the weights to Double
|
368
371
|
final_reward = net(rewards)
|
369
372
|
return final_reward
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=Mw543YXe6ddweCkbMiBJIu5taTJQMEm-gNIu3Omp8e8,193
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=DuacU7Dou0YVfINsYsR7NorKUgchUdz7Px5-rwlKFAM,20034
|
4
|
+
gym_examples-3.0.51.dist-info/METADATA,sha256=vopRCS5_QmK3Gc2le27GqNMnovSG4lZtGoeWXFyyy1M,411
|
5
|
+
gym_examples-3.0.51.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.51.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.51.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=kLKssrjnaeFOFJ1ors1hcg4zveeEAFGrpuK_idNHjpI,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=z_q_zEz2l8qhFcAfUMS8Pt6jp74bn7Zyj1ND7clNjWg,19846
|
4
|
-
gym_examples-3.0.49.dist-info/METADATA,sha256=QqU80pNoPfWZkckvgwF9JWywF5qDhZIIoNtyGFXetI4,411
|
5
|
-
gym_examples-3.0.49.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.49.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.49.dist-info/RECORD,,
|
File without changes
|
File without changes
|