gym-examples 3.0.427__py3-none-any.whl → 3.0.429__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.427"
8
+ __version__ = "3.0.429"
@@ -29,35 +29,6 @@ latency_per_hop = 1 # latency per hop in seconds
29
29
  base_back_up_dir = "results/data/"
30
30
  max_reward = 1 # maximum reward value when the sensors sent data to the base station. The opposite value is when the sensors perform an unauthorized action
31
31
 
32
- # class Attention(nn.Module):
33
- # def __init__(self, input_dim, output_dim):
34
- # super(Attention, self).__init__() # Call the initializer of the parent class (nn.Module)
35
- # self.input_dim = input_dim # Set the input dimension of the network
36
- # self.output_dim = output_dim # Set the output dimension of the network
37
- # # self.linear1 = CustomizedLinear(input_dim, 64) # Define the first linear layer. It takes input of size 'input_dim' and outputs size '64'
38
- # # self.linear2 = CustomizedLinear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
39
- # self.linear1 = nn.Linear(input_dim, 64) # Define the first linear layer. It takes input of size 'input_dim' and outputs size '64'
40
- # self.linear2 = nn.Linear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
41
-
42
-
43
- # def forward(self, x):
44
- # # Step 1: Ensure input is 2D by adding a batch dimension if necessary
45
- # if x.dim() == 1:
46
- # x = x.unsqueeze(0) # Shape: [1, input_dim]
47
- # # x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
48
- # x = F.softplus(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
49
- # attention_weights = F.softmax(x, dim=1) # Apply the softmax function to get the attention weights. Initially F.softmax(x, dim=0)
50
- # x = attention_weights * x # Multiply the input by the attention weights
51
- # x = self.linear2(x) # Pass the result through another linear layer
52
- # return x
53
-
54
- # net = Attention(input_dim, output_dim)
55
- # net = net.double() # Convert the weights to Double
56
-
57
- import torch
58
- import torch.nn as nn
59
- from gaussian_adaptive_attention import GaussianAdaptiveAttention # Ensure this is properly imported
60
-
61
32
  class ScalarAttentionModel(nn.Module):
62
33
  def __init__(self, input_dim=4, output_dim=1):
63
34
  super(ScalarAttentionModel, self).__init__()
@@ -87,7 +58,7 @@ class WSNRoutingEnv(gym.Env):
87
58
 
88
59
  ALGO_NAME = "" # Global flag to control the algorithm name
89
60
 
90
- def __init__(self, n_sensors = 30, coverage_radius=(upper_bound - lower_bound)/4, num_timesteps = None, version = None):
61
+ def __init__(self, n_sensors = 40, coverage_radius=(upper_bound - lower_bound)/4, num_timesteps = None, version = None):
91
62
 
92
63
  super(WSNRoutingEnv, self).__init__()
93
64
  # Create filenames to save statistics for evaluation
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.427
3
+ Version: 3.0.429
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=OebghBZFE5nqI0iKS-zz3W3swnRQztSgvn-rXpJX9_g,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=OGPLzRnD2vtrE2dovfrCQemPy-7HASC_OFanUfDyXn8,25135
4
+ gym_examples-3.0.429.dist-info/METADATA,sha256=Ae4L1eQ1eDSUvZ5GmVkYPWzYjH2RzG-S_jZ55-nzaSk,412
5
+ gym_examples-3.0.429.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.429.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.429.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=avBRHOfc3V5B-Vm6vQ6eoGlGotygQumA3rBW9_6Ozoc,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=CFTaC2-YCH8MFiM_8e7nDZubT1lwB-z_SAtypmNy34E,27077
4
- gym_examples-3.0.427.dist-info/METADATA,sha256=JQxFq628eY086b5JeQED-yRwEAP0RmT1XgjxNLGH9SE,412
5
- gym_examples-3.0.427.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.427.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.427.dist-info/RECORD,,