gym-examples 3.0.427__py3-none-any.whl → 3.0.428__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +1 -30
- {gym_examples-3.0.427.dist-info → gym_examples-3.0.428.dist-info}/METADATA +1 -1
- gym_examples-3.0.428.dist-info/RECORD +7 -0
- gym_examples-3.0.427.dist-info/RECORD +0 -7
- {gym_examples-3.0.427.dist-info → gym_examples-3.0.428.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.427.dist-info → gym_examples-3.0.428.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -29,35 +29,6 @@ latency_per_hop = 1 # latency per hop in seconds
|
|
29
29
|
base_back_up_dir = "results/data/"
|
30
30
|
max_reward = 1 # maximum reward value when the sensors sent data to the base station. The opposite value is when the sensors perform an unauthorized action
|
31
31
|
|
32
|
-
# class Attention(nn.Module):
|
33
|
-
# def __init__(self, input_dim, output_dim):
|
34
|
-
# super(Attention, self).__init__() # Call the initializer of the parent class (nn.Module)
|
35
|
-
# self.input_dim = input_dim # Set the input dimension of the network
|
36
|
-
# self.output_dim = output_dim # Set the output dimension of the network
|
37
|
-
# # self.linear1 = CustomizedLinear(input_dim, 64) # Define the first linear layer. It takes input of size 'input_dim' and outputs size '64'
|
38
|
-
# # self.linear2 = CustomizedLinear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
|
39
|
-
# self.linear1 = nn.Linear(input_dim, 64) # Define the first linear layer. It takes input of size 'input_dim' and outputs size '64'
|
40
|
-
# self.linear2 = nn.Linear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
|
41
|
-
|
42
|
-
|
43
|
-
# def forward(self, x):
|
44
|
-
# # Step 1: Ensure input is 2D by adding a batch dimension if necessary
|
45
|
-
# if x.dim() == 1:
|
46
|
-
# x = x.unsqueeze(0) # Shape: [1, input_dim]
|
47
|
-
# # x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
|
48
|
-
# x = F.softplus(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
|
49
|
-
# attention_weights = F.softmax(x, dim=1) # Apply the softmax function to get the attention weights. Initially F.softmax(x, dim=0)
|
50
|
-
# x = attention_weights * x # Multiply the input by the attention weights
|
51
|
-
# x = self.linear2(x) # Pass the result through another linear layer
|
52
|
-
# return x
|
53
|
-
|
54
|
-
# net = Attention(input_dim, output_dim)
|
55
|
-
# net = net.double() # Convert the weights to Double
|
56
|
-
|
57
|
-
import torch
|
58
|
-
import torch.nn as nn
|
59
|
-
from gaussian_adaptive_attention import GaussianAdaptiveAttention # Ensure this is properly imported
|
60
|
-
|
61
32
|
class ScalarAttentionModel(nn.Module):
|
62
33
|
def __init__(self, input_dim=4, output_dim=1):
|
63
34
|
super(ScalarAttentionModel, self).__init__()
|
@@ -87,7 +58,7 @@ class WSNRoutingEnv(gym.Env):
|
|
87
58
|
|
88
59
|
ALGO_NAME = "" # Global flag to control the algorithm name
|
89
60
|
|
90
|
-
def __init__(self, n_sensors =
|
61
|
+
def __init__(self, n_sensors = 40, coverage_radius=(upper_bound - lower_bound)/4, num_timesteps = None, version = None):
|
91
62
|
|
92
63
|
super(WSNRoutingEnv, self).__init__()
|
93
64
|
# Create filenames to save statistics for evaluation
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=GApbmoUFaHUkDNzwhrUbMQzHlf8ipQcx9PHUx0gsf-8,166
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=OGPLzRnD2vtrE2dovfrCQemPy-7HASC_OFanUfDyXn8,25135
|
4
|
+
gym_examples-3.0.428.dist-info/METADATA,sha256=jV11oRsnb-1lNEJZKQ-8Mv_hLMwkat9EMOStlQS0sUQ,412
|
5
|
+
gym_examples-3.0.428.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.428.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.428.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=avBRHOfc3V5B-Vm6vQ6eoGlGotygQumA3rBW9_6Ozoc,166
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=CFTaC2-YCH8MFiM_8e7nDZubT1lwB-z_SAtypmNy34E,27077
|
4
|
-
gym_examples-3.0.427.dist-info/METADATA,sha256=JQxFq628eY086b5JeQED-yRwEAP0RmT1XgjxNLGH9SE,412
|
5
|
-
gym_examples-3.0.427.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.427.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.427.dist-info/RECORD,,
|
File without changes
|
File without changes
|