gym-examples 3.0.379__py3-none-any.whl → 3.0.381__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +3 -7
- {gym_examples-3.0.379.dist-info → gym_examples-3.0.381.dist-info}/METADATA +1 -1
- gym_examples-3.0.381.dist-info/RECORD +7 -0
- gym_examples-3.0.379.dist-info/RECORD +0 -7
- {gym_examples-3.0.379.dist-info → gym_examples-3.0.381.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.379.dist-info → gym_examples-3.0.381.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -59,7 +59,8 @@ class Attention(nn.Module):
|
|
59
59
|
# Step 1: Ensure input is 2D by adding a batch dimension if necessary
|
60
60
|
if x.dim() == 1:
|
61
61
|
x = x.unsqueeze(0) # Shape: [1, input_dim]
|
62
|
-
x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
|
62
|
+
# x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
|
63
|
+
x = F.Softplus(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
|
63
64
|
attention_weights = F.softmax(x, dim=1) # Apply the softmax function to get the attention weights. Initially F.softmax(x, dim=0)
|
64
65
|
x = attention_weights * x # Multiply the input by the attention weights
|
65
66
|
x = self.linear2(x) # Pass the result through another linear layer
|
@@ -196,7 +197,6 @@ class WSNRoutingEnv(gym.Env):
|
|
196
197
|
self.packet_latency[i] = 0
|
197
198
|
|
198
199
|
rewards[i] = [max_reward] * input_dim # Reward for transmitting data to the base station
|
199
|
-
print(f"Sensor {i} transmitted data to the base station with modified reward: {self.compute_attention_rewards(rewards[i])}")
|
200
200
|
dones[i] = True
|
201
201
|
else:
|
202
202
|
distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
|
@@ -223,11 +223,7 @@ class WSNRoutingEnv(gym.Env):
|
|
223
223
|
self.packet_latency[i] = 0
|
224
224
|
|
225
225
|
rewards[i] = self.compute_individual_rewards(i, action)
|
226
|
-
|
227
|
-
raise Error("Stop here")
|
228
|
-
else:
|
229
|
-
print(f"Sensor {i} transmitted data to sensor {action} with modified reward: {self.compute_attention_rewards(rewards[i])}")
|
230
|
-
|
226
|
+
|
231
227
|
# Update the number of packets
|
232
228
|
self.number_of_packets[action] += self.number_of_packets[i]
|
233
229
|
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=-xF9v1R8lVyLNVmg8tKb1ZoPyow-1QIZ84QtzXD78rU,166
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=kbGt7hOHZIGso4NIyd0cm8TSbFx0RazDsXN8lAD5c6U,26990
|
4
|
+
gym_examples-3.0.381.dist-info/METADATA,sha256=snKPXRfg3uUbz2zqWT1c6-GBVPPh7VDOomY2laV1HRs,412
|
5
|
+
gym_examples-3.0.381.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.381.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.381.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=-ok5iR5eVxAwucS7NCfeCQPIdhS-25avnp1oxRQR1qg,166
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=3q-Xt1_1zZHatLkKYvkJUPYpHYoysZtolvMODkMKYHg,27263
|
4
|
-
gym_examples-3.0.379.dist-info/METADATA,sha256=jgNbjP_koNOXpHUe51r4Xwi0F_nwC9-9WApQF-D4Pv4,412
|
5
|
-
gym_examples-3.0.379.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.379.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.379.dist-info/RECORD,,
|
File without changes
|
File without changes
|