gym-examples 3.0.36__py3-none-any.whl → 3.0.38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.36"
9
+ __version__ = "3.0.38"
@@ -10,7 +10,7 @@ import torch.nn as nn
10
10
  import torch.nn.functional as F
11
11
 
12
12
  # Define the network parameters for the final reward function
13
- input_dim = 4 # lenght of the individual rewards vector
13
+ input_dim = 6 # lenght of the individual rewards vector
14
14
  output_dim = 1 # final reward
15
15
 
16
16
  Eelec = 50e-9 # energy consumption per bit in joules
@@ -146,6 +146,9 @@ class WSNRoutingEnv(gym.Env):
146
146
 
147
147
  # Compute individual rewards
148
148
  rewards[i] = self.compute_individual_rewards(i, action)
149
+ reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
150
+ reward_latency = self.compute_reward_latency()
151
+ rewards[i] = np.append(rewards[i], [reward_packet_delivery_ratio, reward_latency])
149
152
  # Update the number of packets
150
153
  self.number_of_packets[action] += self.number_of_packets[i]
151
154
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
@@ -165,11 +168,11 @@ class WSNRoutingEnv(gym.Env):
165
168
 
166
169
  self.get_metrics()
167
170
 
168
- reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
169
- reward_latency = self.compute_reward_latency()
170
- rewards_metrics = [reward_packet_delivery_ratio, reward_latency]
171
- rewards_metrics = self.compute_attention_rewards(rewards_metrics)
172
- rewards = [torch.tensor(r, dtype=torch.float64) + rewards_metrics if isinstance(r, int) else r + rewards_metrics for r in rewards]
171
+ # reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
172
+ # reward_latency = self.compute_reward_latency()
173
+ # rewards_metrics = [reward_packet_delivery_ratio, reward_latency]
174
+ # rewards_metrics = self.compute_attention_rewards(rewards_metrics)
175
+ # rewards = [torch.tensor(r, dtype=torch.float64) + rewards_metrics if isinstance(r, int) else r + rewards_metrics for r in rewards]
173
176
 
174
177
  return self._get_obs(), rewards, dones, {}
175
178
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.36
3
+ Version: 3.0.38
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=286-MtnDt-9kaoNC_GYG3ThCFajThGP6oSNFDSf8dR4,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=xkG40uqGVb7b5HeWjhaoRi2O6k3qOyn0bpa_rajCxYs,19238
4
+ gym_examples-3.0.38.dist-info/METADATA,sha256=E5UKSrZDkqKJaoyVUYOP3xGKubRN1Kfm7NQ1VEicvQ4,411
5
+ gym_examples-3.0.38.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.38.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.38.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=VS6xQR_7oWFS7m3DMHmBZBaaXseH1lDWbgiMiYtfY1Q,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=TBiED0ZrMLUclCOcsZwYnP_ecl3KQEYGAeqTfkYke8U,18972
4
- gym_examples-3.0.36.dist-info/METADATA,sha256=iXEHSv-wwCpXBqwTlWAkmNfn8jP2QCWpxFE2AgGxmhI,411
5
- gym_examples-3.0.36.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.36.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.36.dist-info/RECORD,,