gym-examples 3.0.369__py3-none-any.whl → 3.0.371__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.369"
8
+ __version__ = "3.0.371"
@@ -36,7 +36,8 @@ class Attention(nn.Module):
36
36
  self.output_dim = output_dim # Set the output dimension of the network
37
37
  self.linear1 = nn.Linear(input_dim, 64) # Define the first linear layer. It takes input of size 'input_dim' and outputs size '64'
38
38
  self.linear2 = nn.Linear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
39
-
39
+ self.softplus = nn.Softplus() # SoftPlus activation function to ensure non-negative outputs
40
+
40
41
  def forward(self, x):
41
42
  # Step 1: Ensure input is 2D by adding a batch dimension if necessary
42
43
  if x.dim() == 1:
@@ -45,6 +46,7 @@ class Attention(nn.Module):
45
46
  attention_weights = F.softmax(x, dim=1) # Apply the softmax function to get the attention weights. Initially F.softmax(x, dim=0)
46
47
  x = attention_weights * x # Multiply the input by the attention weights
47
48
  x = self.linear2(x) # Pass the result through another linear layer
49
+ x = self.softplus(x) # Apply SoftPlus activation to ensure non-negative outputs
48
50
  return x
49
51
 
50
52
  net = Attention(input_dim, output_dim)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.369
3
+ Version: 3.0.371
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=xgcRtA4LxuxW_KTDA4A4EH1H_1G6m6_PWlTj5ENOeBY,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=2NUSYwbm1Ygaff5T7qzehDZp7S-DYMYPcvXF6sQahFA,26116
4
+ gym_examples-3.0.371.dist-info/METADATA,sha256=CA5-mEjTRxY_g6XQcX-bPmIgnN_xx6E-THwdYKbkg2M,412
5
+ gym_examples-3.0.371.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.371.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.371.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=Sh5NvlSXNWnNESr6Jj3uZm2FSMyBdy_7hRdSLVZpSSk,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=erPf4tvrmD-M4ISTP9wHNTnVGgjZQYLqBWrVutIKcw8,25916
4
- gym_examples-3.0.369.dist-info/METADATA,sha256=pLMzNuC4BxjKO1PzZkndxSZj8vZVVkot6Y573-zBhes,412
5
- gym_examples-3.0.369.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.369.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.369.dist-info/RECORD,,