gym-examples 3.0.348__py3-none-any.whl → 3.0.350__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.348"
8
+ __version__ = "3.0.350"
@@ -38,11 +38,10 @@ class Attention(nn.Module):
38
38
  self.linear2 = nn.Linear(64, output_dim) # Define the second linear layer. It takes input of size '64' and outputs size 'output_dim'
39
39
 
40
40
  def forward(self, x):
41
- x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
42
- print("==============================")
43
- print(f"x.dim: {x.dim()}")
44
- print("==============================")
45
- raise ValueError("Stop here")
41
+ # Step 1: Ensure input is 2D by adding a batch dimension if necessary
42
+ if x.dim() == 1:
43
+ x = x.unsqueeze(0) # Shape: [1, input_dim]
44
+ x = F.relu(self.linear1(x)) # Pass the input through a linear layer and a ReLU activation function
46
45
  attention_weights = F.softmax(x, dim=1) # Apply the softmax function to get the attention weights. Initially F.softmax(x, dim=0)
47
46
  x = attention_weights * x # Multiply the input by the attention weights
48
47
  x = self.linear2(x) # Pass the result through another linear layer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.348
3
+ Version: 3.0.350
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=_bZArYSz7CqKCjGT21LpKQnWJ_-UBzNYtqQV9Lqzj64,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=Dv9LjdTJHfZ3c4NSIFNq9DePV4hFOkJ7IM9eCAkCpBE,25356
4
+ gym_examples-3.0.350.dist-info/METADATA,sha256=9fufmXOzIAwbHnlwplD7NShDyjTFxG90cwVAq_jm4S8,412
5
+ gym_examples-3.0.350.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.350.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.350.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=wF4URbgfzFU0k9BzXDG3rlWdNZK51fq3BjZVX24gw4g,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=K6GSlHNrO4JGYQXXX5VH2Avs2deW2RHc54UTkOWWR4Y,25359
4
- gym_examples-3.0.348.dist-info/METADATA,sha256=r5kFwvHGCVq_LU7ML-QNM5AuHuJdLxLEI83Bv3IA6Xk,412
5
- gym_examples-3.0.348.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.348.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.348.dist-info/RECORD,,