gym-examples 3.0.289__py3-none-any.whl → 3.0.291__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +4 -5
- {gym_examples-3.0.289.dist-info → gym_examples-3.0.291.dist-info}/METADATA +1 -1
- gym_examples-3.0.291.dist-info/RECORD +7 -0
- gym_examples-3.0.289.dist-info/RECORD +0 -7
- {gym_examples-3.0.289.dist-info → gym_examples-3.0.291.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.289.dist-info → gym_examples-3.0.291.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -49,8 +49,6 @@ net = net.double() # Convert the weights to Double
|
|
49
49
|
|
50
50
|
class WSNRoutingEnv(gym.Env):
|
51
51
|
|
52
|
-
PRINT_STATS = "False" # Global flag to control printing of statistics
|
53
|
-
|
54
52
|
def __init__(self, n_sensors = 20, coverage_radius=(upper_bound - lower_bound)/4, num_timesteps = None, version = None):
|
55
53
|
|
56
54
|
super(WSNRoutingEnv, self).__init__()
|
@@ -176,8 +174,8 @@ class WSNRoutingEnv(gym.Env):
|
|
176
174
|
|
177
175
|
self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
|
178
176
|
# Calculate final reward
|
179
|
-
|
180
|
-
rewards[i] = np.
|
177
|
+
rewards[i] = self.compute_attention_rewards(rewards[i])
|
178
|
+
rewards[i] = np.sum(rewards[i])
|
181
179
|
|
182
180
|
# Integrate the mobility of the sensors
|
183
181
|
# self.integrate_mobility()
|
@@ -190,7 +188,8 @@ class WSNRoutingEnv(gym.Env):
|
|
190
188
|
self.get_metrics()
|
191
189
|
|
192
190
|
rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
|
193
|
-
rewards = np.mean(rewards) # Average the rewards
|
191
|
+
# rewards = np.mean(rewards) # Average the rewards
|
192
|
+
rewards = np.sum(rewards) # Sum the rewards
|
194
193
|
|
195
194
|
for i in range(self.n_sensors):
|
196
195
|
if not dones[i]:
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=g4_IVYmbYOZ1AuJoDns8FY1Rcz6ytu5X4o5ASIQ9Hk0,166
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=pjGwgn572BOO4gBiEm-h4dy24ntfFnJJOZFVyddXRF4,23272
|
4
|
+
gym_examples-3.0.291.dist-info/METADATA,sha256=PNgl1vaHrYgL_S50VL0Y_Yuu9i7PN10gxNrZtXgSKDs,412
|
5
|
+
gym_examples-3.0.291.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.291.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.291.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=XiUSy0mAqc9WEZvtxFxYib7pCrFk9Z6aixYDYmBAiJg,166
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=MGfq0PaZFeTe6KLnNFvI-GmjCOkzbvdOY1jtdlp_RYM,23298
|
4
|
-
gym_examples-3.0.289.dist-info/METADATA,sha256=AkGFk7Dl1C-uml6F1tNu1s-4_HnuEJ0wjlLe1Gi0rd8,412
|
5
|
-
gym_examples-3.0.289.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.289.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.289.dist-info/RECORD,,
|
File without changes
|
File without changes
|