gym-examples 3.0.289__py3-none-any.whl → 3.0.291__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.289"
8
+ __version__ = "3.0.291"
@@ -49,8 +49,6 @@ net = net.double() # Convert the weights to Double
49
49
 
50
50
  class WSNRoutingEnv(gym.Env):
51
51
 
52
- PRINT_STATS = "False" # Global flag to control printing of statistics
53
-
54
52
  def __init__(self, n_sensors = 20, coverage_radius=(upper_bound - lower_bound)/4, num_timesteps = None, version = None):
55
53
 
56
54
  super(WSNRoutingEnv, self).__init__()
@@ -176,8 +174,8 @@ class WSNRoutingEnv(gym.Env):
176
174
 
177
175
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
178
176
  # Calculate final reward
179
- # rewards[i] = self.compute_attention_rewards(rewards[i])
180
- rewards[i] = np.mean(rewards[i])
177
+ rewards[i] = self.compute_attention_rewards(rewards[i])
178
+ rewards[i] = np.sum(rewards[i])
181
179
 
182
180
  # Integrate the mobility of the sensors
183
181
  # self.integrate_mobility()
@@ -190,7 +188,8 @@ class WSNRoutingEnv(gym.Env):
190
188
  self.get_metrics()
191
189
 
192
190
  rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
193
- rewards = np.mean(rewards) # Average the rewards
191
+ # rewards = np.mean(rewards) # Average the rewards
192
+ rewards = np.sum(rewards) # Sum the rewards
194
193
 
195
194
  for i in range(self.n_sensors):
196
195
  if not dones[i]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.289
3
+ Version: 3.0.291
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=g4_IVYmbYOZ1AuJoDns8FY1Rcz6ytu5X4o5ASIQ9Hk0,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=pjGwgn572BOO4gBiEm-h4dy24ntfFnJJOZFVyddXRF4,23272
4
+ gym_examples-3.0.291.dist-info/METADATA,sha256=PNgl1vaHrYgL_S50VL0Y_Yuu9i7PN10gxNrZtXgSKDs,412
5
+ gym_examples-3.0.291.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.291.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.291.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=XiUSy0mAqc9WEZvtxFxYib7pCrFk9Z6aixYDYmBAiJg,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=MGfq0PaZFeTe6KLnNFvI-GmjCOkzbvdOY1jtdlp_RYM,23298
4
- gym_examples-3.0.289.dist-info/METADATA,sha256=AkGFk7Dl1C-uml6F1tNu1s-4_HnuEJ0wjlLe1Gi0rd8,412
5
- gym_examples-3.0.289.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.289.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.289.dist-info/RECORD,,