gym-examples 3.0.284__py3-none-any.whl → 3.0.286__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.284"
8
+ __version__ = "3.0.286"
@@ -81,10 +81,7 @@ class WSNRoutingEnv(gym.Env):
81
81
  )
82
82
 
83
83
  # self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
84
- # self.action_space = MultiDiscrete([self.n_sensors + 1] * self.n_agents)
85
- # self.action_space = MultiDiscrete([self.n_agents, self.n_sensors + 1])
86
- # self.action_space = Discrete(self.n_sensors + 1) # +1 for the base station
87
- self.action_space = Discrete((self.n_sensors + 1)**self.n_agents)
84
+ self.action_space = MultiDiscrete([self.n_sensors + 1] * self.n_agents)
88
85
 
89
86
  self.reset()
90
87
 
@@ -120,7 +117,6 @@ class WSNRoutingEnv(gym.Env):
120
117
  self.steps += 1
121
118
  rewards = [-max_reward] * self.n_sensors
122
119
  dones = [False] * self.n_sensors
123
- actions = self.to_base_n(actions, self.n_sensors + 1)
124
120
  for i, action in enumerate(actions):
125
121
  if self.remaining_energy[i] <= 0 or self.number_of_packets[i] <= 0:
126
122
  continue # Skip if sensor has no energy left or no packets to transmit
@@ -173,7 +169,7 @@ class WSNRoutingEnv(gym.Env):
173
169
  self.packet_latency[action] += self.packet_latency[i] + latency_per_hop
174
170
  self.packet_latency[i] = 0
175
171
 
176
- rewards = self.compute_individual_rewards(i, action)
172
+ rewards[i] = self.compute_individual_rewards(i, action)
177
173
 
178
174
  # Update the number of packets
179
175
  self.number_of_packets[action] += self.number_of_packets[i]
@@ -181,7 +177,7 @@ class WSNRoutingEnv(gym.Env):
181
177
  self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
182
178
  # Calculate final reward
183
179
  # rewards[i] = self.compute_attention_rewards(rewards[i])
184
- rewards = np.mean(rewards)
180
+ rewards[i] = np.mean(rewards[i])
185
181
 
186
182
  # Integrate the mobility of the sensors
187
183
  # self.integrate_mobility()
@@ -194,9 +190,12 @@ class WSNRoutingEnv(gym.Env):
194
190
  self.get_metrics()
195
191
 
196
192
  rewards = [reward.item() if isinstance(reward, torch.Tensor) else reward for reward in rewards] # Convert the reward to a float
193
+ rewards = np.mean(rewards) # Average the rewards
194
+
197
195
  for i in range(self.n_sensors):
198
196
  if not dones[i]:
199
197
  dones[i] = self.remaining_energy[i] <= 0 or self.number_of_packets[i] == 0
198
+ dones = np.all(dones)
200
199
 
201
200
  return self._get_obs(), rewards, dones, self.get_metrics()
202
201
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.284
3
+ Version: 3.0.286
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=1GK2OycRc394qAo5oxOKW-VdY8PGCGL8BGGeb7kYZmo,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=IxZOztoXNUFBhjzrZ_jw0nRg1EhPtTMYDOj6G2-ZT9U,23292
4
+ gym_examples-3.0.286.dist-info/METADATA,sha256=Mu-PCSCgadaSrJI2QGlySSqtueil18a73qsvuIwyZxo,412
5
+ gym_examples-3.0.286.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.286.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.286.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=SbYVbDAngXH8S9SM6aQijqGwMUt-FSXYtOV00-_0ahI,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=VzbARUwPIdS6-RkQND3dxx0lLheFpP6NqaBwT5JY91o,23503
4
- gym_examples-3.0.284.dist-info/METADATA,sha256=U9huJCLpn-NIXHhbpD97MFIY_WpCrOxX7ebSgLBsf_w,412
5
- gym_examples-3.0.284.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.284.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.284.dist-info/RECORD,,