gym-examples 3.0.256__py3-none-any.whl → 3.0.258__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -5,4 +5,4 @@ register(
5
5
  entry_point="gym_examples.envs:WSNRoutingEnv",
6
6
  )
7
7
 
8
- __version__ = "3.0.256"
8
+ __version__ = "3.0.258"
@@ -11,7 +11,7 @@ import torch.nn.functional as F
11
11
  import os
12
12
 
13
13
  # Define the network parameters for the final reward function
14
- input_dim = 7 # length of the individual rewards vector
14
+ input_dim = 4 # length of the individual rewards vector
15
15
  output_dim = 1 # final reward
16
16
 
17
17
  Eelec = 50e-9 # energy consumption per bit in joules
@@ -130,6 +130,7 @@ class WSNRoutingEnv(gym.Env):
130
130
 
131
131
 
132
132
  def step(self, actions):
133
+ print(f"Actions ins step of WSNRoutingEnv: {actions}")
133
134
  self.steps += 1
134
135
  # rewards = [-max_reward] * self.n_sensors
135
136
  reward = -max_reward
@@ -395,8 +396,9 @@ class WSNRoutingEnv(gym.Env):
395
396
 
396
397
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
397
398
 
398
- return np.concatenate((rewards_energy, rewards_performance))
399
+ # return np.concatenate((rewards_energy, rewards_performance))
399
400
  # return np.array([reward_consumption_energy, reward_dispersion_remaining_energy])
401
+ return rewards_energy
400
402
 
401
403
 
402
404
  def compute_network_rewards(self):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.256
3
+ Version: 3.0.258
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=LumddSwTvrHHCa_8b8YMW7PjNgTp9Wm23Q6GEH6ENy0,166
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=Tyv58SdLD0a6CVnlxVPqX15wsaCzyBYRzS8pu_vRIsw,26545
4
+ gym_examples-3.0.258.dist-info/METADATA,sha256=XA4GUiELB0d0lVzdZn8l5OD8tl_6G8x4fjf9cvDUwIE,412
5
+ gym_examples-3.0.258.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.258.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.258.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=l_XCovTPiSp26hATatf7S8molTWwjo1UPpSzS-bB2Mg,166
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=HdGwa7pL3eVjHlkTnCMMF3LnM9tQzog-d5Ur41G80Ic,26448
4
- gym_examples-3.0.256.dist-info/METADATA,sha256=Rizk220znxSoSZ4ZHY8g62PV7eZZiGHpyODwJHYePic,412
5
- gym_examples-3.0.256.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.256.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.256.dist-info/RECORD,,