gym-examples 3.0.220__py3-none-any.whl → 3.0.222__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.220"
9
+ __version__ = "3.0.222"
@@ -11,7 +11,7 @@ import torch.nn.functional as F
11
11
  import os
12
12
 
13
13
  # Define the network parameters for the final reward function
14
- input_dim = 7 # length of the individual rewards vector
14
+ input_dim = 2 # length of the individual rewards vector
15
15
  output_dim = 1 # final reward
16
16
 
17
17
  Eelec = 50e-9 # energy consumption per bit in joules
@@ -213,8 +213,8 @@ class WSNRoutingEnv(gym.Env):
213
213
 
214
214
  rewards = [r.item() if isinstance(r, torch.Tensor) else r for r in rewards] # Convert the rewards to a list of floats
215
215
  # rewards = np.sum(rewards) # Sum the rewards of all agents
216
- # rewards = np.mean(rewards) # Average the rewards of all agents
217
- rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
216
+ rewards = np.mean(rewards) # Average the rewards of all agents
217
+ # rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
218
218
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
219
219
  dones = all(dones) # Done if all agents are done
220
220
 
@@ -386,8 +386,9 @@ class WSNRoutingEnv(gym.Env):
386
386
 
387
387
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
388
388
 
389
- return np.concatenate((rewards_energy, rewards_performance))
390
- # return rewards_energy
389
+ # return np.concatenate((rewards_energy, rewards_performance))
390
+ return np.array([reward_consumption_energy, reward_dispersion_remaining_energy])
391
+
391
392
 
392
393
  def compute_network_rewards(self):
393
394
 
@@ -400,9 +401,7 @@ class WSNRoutingEnv(gym.Env):
400
401
  reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
401
402
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
402
403
 
403
- # return np.concatenate((rewards_energy, rewards_performance))
404
- # return rewards_energy
405
- return np.array([reward_consumption_energy])
404
+ return np.concatenate((rewards_energy, rewards_performance))
406
405
 
407
406
  def network_reward_dispersion_remaining_energy(self):
408
407
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.220
3
+ Version: 3.0.222
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=ZfjhPAT6w-L2SDjh1MPbA--styy5hpQquFcUXJygFLQ,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=HwisiCG_Q6xWufQnA-M_UjhLJdrPGAjkgV-C--84J90,26298
4
+ gym_examples-3.0.222.dist-info/METADATA,sha256=4jNKl6QaBZqaDszpNsBkXil0NmdQpBnh0WE6hfIntbg,412
5
+ gym_examples-3.0.222.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.222.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.222.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=MEYnbGONT9nEeGjf_5eFPpnFuoYOFSHCwbl4ZhogWlo,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=KaqAWRQ9hG_Q46r60GwUu0p92D9lWcRwOerHHRP9CXo,26322
4
- gym_examples-3.0.220.dist-info/METADATA,sha256=iM7DTB1bT5TB-MkxbZcm9wf_8hFrLgrOVRgzTmYRENU,412
5
- gym_examples-3.0.220.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.220.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.220.dist-info/RECORD,,