gym-examples 3.0.220__py3-none-any.whl → 3.0.221__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.220"
9
+ __version__ = "3.0.221"
@@ -213,37 +213,37 @@ class WSNRoutingEnv(gym.Env):
213
213
 
214
214
  rewards = [r.item() if isinstance(r, torch.Tensor) else r for r in rewards] # Convert the rewards to a list of floats
215
215
  # rewards = np.sum(rewards) # Sum the rewards of all agents
216
- # rewards = np.mean(rewards) # Average the rewards of all agents
217
- rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
216
+ rewards = np.mean(rewards) # Average the rewards of all agents
217
+ # rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
218
218
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
219
219
  dones = all(dones) # Done if all agents are done
220
220
 
221
- if os.getenv('PRINT_STATS') == 'True': # We are trying to extract only the statistics for the PPO algorithm
222
- self.number_of_steps += 1
223
- self.episode_return += rewards
224
- if self.number_of_steps >= self.num_timesteps:
225
- self.episode_returns.append(self.episode_return)
226
- self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
227
- self.episode_mean_remaining_energy.append(np.mean(self.remaining_energy))
228
- self.episode_total_consumption_energy.append(np.sum(initial_energy - self.remaining_energy))
229
- self.episode_network_throughput.append(self.network_throughput)
230
- self.episode_packet_delivery_ratio.append(self.packet_delivery_ratio)
231
- self.episode_network_lifetime.append(self.network_lifetime)
232
- self.episode_average_latency.append(self.average_latency)
233
-
234
- metrics = {
235
- "returns_PPO": self.episode_returns,
236
- "std_remaining_energy_PPO": self.episode_std_remaining_energy,
237
- "total_consumption_energy_PPO": self.episode_total_consumption_energy,
238
- "mean_remaining_energy_PPO": self.episode_mean_remaining_energy,
239
- "network_throughput_PPO": self.episode_network_throughput,
240
- "packet_delivery_ratio_PPO": self.episode_packet_delivery_ratio,
241
- "network_lifetime_PPO": self.episode_network_lifetime,
242
- "average_latency_PPO": self.episode_average_latency
243
- }
244
-
245
- for metric_name, metric_value in metrics.items():
246
- np.save(f"{base_back_up_dir}{metric_name}_{self.version}.npy", np.array(metric_value))
221
+ # if os.getenv('PRINT_STATS') == 'True': # We are trying to extract only the statistics for the PPO algorithm
222
+ # self.number_of_steps += 1
223
+ # self.episode_return += rewards
224
+ # if self.number_of_steps >= self.num_timesteps:
225
+ # self.episode_returns.append(self.episode_return)
226
+ # self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
227
+ # self.episode_mean_remaining_energy.append(np.mean(self.remaining_energy))
228
+ # self.episode_total_consumption_energy.append(np.sum(initial_energy - self.remaining_energy))
229
+ # self.episode_network_throughput.append(self.network_throughput)
230
+ # self.episode_packet_delivery_ratio.append(self.packet_delivery_ratio)
231
+ # self.episode_network_lifetime.append(self.network_lifetime)
232
+ # self.episode_average_latency.append(self.average_latency)
233
+
234
+ # metrics = {
235
+ # "returns_PPO": self.episode_returns,
236
+ # "std_remaining_energy_PPO": self.episode_std_remaining_energy,
237
+ # "total_consumption_energy_PPO": self.episode_total_consumption_energy,
238
+ # "mean_remaining_energy_PPO": self.episode_mean_remaining_energy,
239
+ # "network_throughput_PPO": self.episode_network_throughput,
240
+ # "packet_delivery_ratio_PPO": self.episode_packet_delivery_ratio,
241
+ # "network_lifetime_PPO": self.episode_network_lifetime,
242
+ # "average_latency_PPO": self.episode_average_latency
243
+ # }
244
+
245
+ # for metric_name, metric_value in metrics.items():
246
+ # np.save(f"{base_back_up_dir}{metric_name}_{self.version}.npy", np.array(metric_value))
247
247
 
248
248
  return self._get_obs(), rewards, dones, {}
249
249
 
@@ -387,7 +387,7 @@ class WSNRoutingEnv(gym.Env):
387
387
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
388
388
 
389
389
  return np.concatenate((rewards_energy, rewards_performance))
390
- # return rewards_energy
390
+
391
391
 
392
392
  def compute_network_rewards(self):
393
393
 
@@ -400,9 +400,7 @@ class WSNRoutingEnv(gym.Env):
400
400
  reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
401
401
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
402
402
 
403
- # return np.concatenate((rewards_energy, rewards_performance))
404
- # return rewards_energy
405
- return np.array([reward_consumption_energy])
403
+ return np.concatenate((rewards_energy, rewards_performance))
406
404
 
407
405
  def network_reward_dispersion_remaining_energy(self):
408
406
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.220
3
+ Version: 3.0.221
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=e3IzKZG7FDVeQeid5naFn1PzaMlIKk94FSEIIRc4DOk,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=9QXOPbuHBEAA4X24dYgYRWQdayupNxTv_Pmyh6PzmRk,26254
4
+ gym_examples-3.0.221.dist-info/METADATA,sha256=geg1ENQ3KH6mdK_BF8opzQPDwil7KcCp-OXBsbrIP-8,412
5
+ gym_examples-3.0.221.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.221.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.221.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=MEYnbGONT9nEeGjf_5eFPpnFuoYOFSHCwbl4ZhogWlo,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=KaqAWRQ9hG_Q46r60GwUu0p92D9lWcRwOerHHRP9CXo,26322
4
- gym_examples-3.0.220.dist-info/METADATA,sha256=iM7DTB1bT5TB-MkxbZcm9wf_8hFrLgrOVRgzTmYRENU,412
5
- gym_examples-3.0.220.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.220.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.220.dist-info/RECORD,,