gym-examples 3.0.21__py3-none-any.whl → 3.0.23__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +5 -4
- {gym_examples-3.0.21.dist-info → gym_examples-3.0.23.dist-info}/METADATA +1 -1
- gym_examples-3.0.23.dist-info/RECORD +7 -0
- gym_examples-3.0.21.dist-info/RECORD +0 -7
- {gym_examples-3.0.21.dist-info → gym_examples-3.0.23.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.21.dist-info → gym_examples-3.0.23.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -137,7 +137,8 @@ class WSNRoutingEnv(gym.Env):
|
|
137
137
|
self.total_latency += self.packet_latency[i] + latency_per_hop
|
138
138
|
self.packet_latency[i] = 0
|
139
139
|
|
140
|
-
rewards[i] = self.compute_individual_rewards(i, action)
|
140
|
+
# rewards[i] = self.compute_individual_rewards(i, action)
|
141
|
+
rewards[i] = np.ones(input_dim) # input_dim should be equal to the number of individual rewards
|
141
142
|
dones[i] = True
|
142
143
|
else:
|
143
144
|
distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
|
@@ -164,9 +165,9 @@ class WSNRoutingEnv(gym.Env):
|
|
164
165
|
self.number_of_packets[action] += self.number_of_packets[i]
|
165
166
|
self.number_of_packets[i] = 0 # Reset the number of packets of the sensor i
|
166
167
|
# Calculate final reward
|
167
|
-
rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
|
168
|
-
final_reward = net(rewards_individual)
|
169
|
-
|
168
|
+
# rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
|
169
|
+
# final_reward = net(rewards_individual)
|
170
|
+
final_reward = np.sum(rewards[i])
|
170
171
|
# weights = np.ones(self.n_sensors, dtype=int)
|
171
172
|
# final_reward = np.sum(reward * weight for reward, weight in zip(rewards[i], weights))
|
172
173
|
rewards[i] = final_reward
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=6UlH1lVgV39cBe9M6fWfhp8pHDJA65h2z8e7m6cQxxI,193
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=FOnvswLo3G33xNfip4zNNzMKjYs5m_lJLOvhqhR6yPo,18737
|
4
|
+
gym_examples-3.0.23.dist-info/METADATA,sha256=Jkko_DEMGrG2u2jUwZU4X_OD_qrc2Z8WBE_deTLD3EE,411
|
5
|
+
gym_examples-3.0.23.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.23.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.23.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=MzRHchFiM8e4DrlFV57GNAYTp3kn04KrDjL43lJM_2E,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=E0kWXS2yQqB0DDl1n5www2auLsjw0HLo-J_sL3nA4zY,18620
|
4
|
-
gym_examples-3.0.21.dist-info/METADATA,sha256=JIuPx6HulQ3n_gYcvPd6Nol0_d1Jj_6-hEJJKYYpbgw,411
|
5
|
-
gym_examples-3.0.21.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.21.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.21.dist-info/RECORD,,
|
File without changes
|
File without changes
|