gym-examples 3.0.217__py3-none-any.whl → 3.0.219__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.217"
9
+ __version__ = "3.0.219"
@@ -28,6 +28,7 @@ coef_network_throughput = 2.6 # coefficient for the network throughput reward
28
28
  coef_packet_delivery_ratio = 1.6 # coefficient for the packet delivery ratio reward
29
29
 
30
30
  base_back_up_dir = "results/data/"
31
+ max_reward = 5 # maximum reward value when the sensors sent data to the base station. The opposite value is when the sensors perform an unauthorized action
31
32
 
32
33
  # Define the final reward function using an attention mechanism
33
34
  class Attention(nn.Module):
@@ -132,7 +133,7 @@ class WSNRoutingEnv(gym.Env):
132
133
  def step(self, actions):
133
134
  actions = [actions[i] for i in range(self.n_agents)] # We want to go back from the MultiDiscrete action space to a tuple of tuple of Discrete action spaces
134
135
  self.steps += 1
135
- rewards = [-100] * self.n_sensors
136
+ rewards = [-max_reward] * self.n_sensors
136
137
  dones = [False] * self.n_sensors
137
138
  for i, action in enumerate(actions):
138
139
  if action not in range(self.n_sensors + 1):
@@ -166,7 +167,7 @@ class WSNRoutingEnv(gym.Env):
166
167
  self.packet_latency[i] = 0
167
168
 
168
169
  # rewards[i] = self.compute_individual_rewards(i, action)
169
- rewards[i] = np.ones(input_dim) * 100 # Reward for transmitting data to the base station
170
+ rewards[i] = np.ones(input_dim) * max_reward # Reward for transmitting data to the base station
170
171
  dones[i] = True
171
172
  else:
172
173
  distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
@@ -212,8 +213,8 @@ class WSNRoutingEnv(gym.Env):
212
213
 
213
214
  rewards = [r.item() if isinstance(r, torch.Tensor) else r for r in rewards] # Convert the rewards to a list of floats
214
215
  # rewards = np.sum(rewards) # Sum the rewards of all agents
215
- rewards = np.mean(rewards) # Average the rewards of all agents
216
- # rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
216
+ # rewards = np.mean(rewards) # Average the rewards of all agents
217
+ rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
217
218
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
218
219
  dones = all(dones) # Done if all agents are done
219
220
 
@@ -400,7 +401,8 @@ class WSNRoutingEnv(gym.Env):
400
401
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
401
402
 
402
403
  # return np.concatenate((rewards_energy, rewards_performance))
403
- return rewards_energy
404
+ # return rewards_energy
405
+ return np.array([reward_consumption_energy])
404
406
 
405
407
  def network_reward_dispersion_remaining_energy(self):
406
408
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.217
3
+ Version: 3.0.219
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=vNFulIxbLObv7YTU5iE0-q_IlsEyqbOjo4U8oKO63rE,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=KaqAWRQ9hG_Q46r60GwUu0p92D9lWcRwOerHHRP9CXo,26322
4
+ gym_examples-3.0.219.dist-info/METADATA,sha256=BPWG-9uMvX3Hdirw0aVfVIc-aCJ1REZkse6cun5cM2g,412
5
+ gym_examples-3.0.219.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.219.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.219.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=d5GtswzIH05DinXbSX-DsDk3d08ag33UrtYYyTNBbIs,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=jAinwY1niJzuF5xysMuOuDEcemjUWz2Gj0FqwOrszUA,26095
4
- gym_examples-3.0.217.dist-info/METADATA,sha256=m7SsZWTp6dma7Eaqt-UtLzaJHhXWPfFo6ncI0hy-LuY,412
5
- gym_examples-3.0.217.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.217.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.217.dist-info/RECORD,,