gym-examples 3.0.210__py3-none-any.whl → 3.0.211__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.210"
9
+ __version__ = "3.0.211"
@@ -130,7 +130,7 @@ class WSNRoutingEnv(gym.Env):
130
130
  def step(self, actions):
131
131
  actions = [actions[i] for i in range(self.n_agents)] # We want to go back from the MultiDiscrete action space to a tuple of tuple of Discrete action spaces
132
132
  self.steps += 1
133
- rewards = [0] * self.n_sensors
133
+ rewards = [-100] * self.n_sensors
134
134
  dones = [False] * self.n_sensors
135
135
  for i, action in enumerate(actions):
136
136
  if action not in range(self.n_sensors + 1):
@@ -163,8 +163,8 @@ class WSNRoutingEnv(gym.Env):
163
163
  self.total_latency += self.packet_latency[i] + latency_per_hop
164
164
  self.packet_latency[i] = 0
165
165
 
166
- rewards[i] = self.compute_individual_rewards(i, action)
167
- # rewards[i] = np.ones(input_dim) # Reward for transmitting data to the base station
166
+ # rewards[i] = self.compute_individual_rewards(i, action)
167
+ rewards[i] = np.ones(input_dim) * 100 # Reward for transmitting data to the base station
168
168
  dones[i] = True
169
169
  else:
170
170
  distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
@@ -210,8 +210,8 @@ class WSNRoutingEnv(gym.Env):
210
210
 
211
211
  rewards = [r.item() if isinstance(r, torch.Tensor) else r for r in rewards] # Convert the rewards to a list of floats
212
212
  # rewards = np.sum(rewards) # Sum the rewards of all agents
213
- # rewards = np.mean(rewards) # Average the rewards of all agents
214
- rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
213
+ rewards = np.mean(rewards) # Average the rewards of all agents
214
+ # rewards = np.mean(self.compute_network_rewards()) # Average the rewards of all agents
215
215
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
216
216
  dones = all(dones) # Done if all agents are done
217
217
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.210
3
+ Version: 3.0.211
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=sHByS6d2-26uT2bg-8T_Fr7OAllomtmEs8lwcIUGJKs,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=FvQq-Y7S-yOKE1p0fU4bubGP0eWUiciMtsc4kUHmjoo,26057
4
+ gym_examples-3.0.211.dist-info/METADATA,sha256=FOUYKkcwfztVdHqK-bvY_oRf1BWzMy945Ih8fhnQ2kQ,412
5
+ gym_examples-3.0.211.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.211.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.211.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=Nn1UcrZxRInKFf4JCxinIa8PEWS4P7wgPq_OK8roe5o,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=wP8oHngOs0pnHplq8Yv8YYJfeA48rQMB3A_EMXVmU2Q,26049
4
- gym_examples-3.0.210.dist-info/METADATA,sha256=Chn-C1wtSJ58hCwLG6ZAOZbWZEWzXt4WK4AKGKDi2TE,412
5
- gym_examples-3.0.210.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.210.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.210.dist-info/RECORD,,