gym-examples 3.0.178__py3-none-any.whl → 3.0.180__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.178"
9
+ __version__ = "3.0.180"
@@ -55,12 +55,8 @@ class WSNRoutingEnv(gym.Env):
55
55
  def __init__(self, n_sensors = 20, coverage_radius=(upper_bound - lower_bound)/4):
56
56
 
57
57
  super(WSNRoutingEnv, self).__init__()
58
- self.log_done = None # Log the done status of the environment
59
- self.log_action = None # Log the action taken by the agent
60
- self.log_steps = None # Log the number of steps taken by the agent
61
58
 
62
59
  # Initialize list of episode metrics
63
- episode_return = None
64
60
  self.number_of_steps = 0 # Total number of steps taken by the agent since the beginning of the training
65
61
  self.episode_returns = []
66
62
  self.episode_std_remaining_energy = []
@@ -91,10 +87,8 @@ class WSNRoutingEnv(gym.Env):
91
87
 
92
88
  def reset(self):
93
89
 
94
- episode_return = 0
95
-
96
90
  if self.episode_count > 1 and os.getenv('PRINT_STATS') == 'True':
97
- self.episode_returns.append(episode_return)
91
+ self.episode_returns.append(self.episode_return)
98
92
  self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
99
93
  self.episode_mean_remaining_energy.append(np.mean(self.remaining_energy))
100
94
  self.episode_total_consumption_energy.append(np.sum(initial_energy - self.remaining_energy))
@@ -102,11 +96,10 @@ class WSNRoutingEnv(gym.Env):
102
96
  self.episode_packet_delivery_ratio.append(self.packet_delivery_ratio)
103
97
  self.episode_network_lifetime.append(self.network_lifetime)
104
98
  self.episode_average_latency.append(self.average_latency)
105
- print(f"Episode: {self.episode_count}")
106
- print(f"This episode ends with # Steps: {self.log_steps}")
107
- print(f"This episode ends with Done: {self.log_done}")
108
- print(f"This episode ends with Action: {self.log_action}")
109
- print(self.get_metrics())
99
+ print(f"Episode: {self.episode_count}")
100
+ print(self.get_metrics())
101
+
102
+ self.episode_return = 0
110
103
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
111
104
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
112
105
  self.remaining_energy = np.ones(self.n_sensors) * initial_energy
@@ -131,9 +124,7 @@ class WSNRoutingEnv(gym.Env):
131
124
 
132
125
  def step(self, actions):
133
126
  actions = [actions[i] for i in range(self.n_agents)] # We want to go back from the MultiDiscrete action space to a tuple of tuple of Discrete action spaces
134
- self.steps += 1
135
- if os.getenv('PRINT_STATS') == 'True':
136
- self.number_of_steps += 1
127
+ self.steps += 1
137
128
  rewards = [0] * self.n_sensors
138
129
  dones = [False] * self.n_sensors
139
130
  for i, action in enumerate(actions):
@@ -217,14 +208,12 @@ class WSNRoutingEnv(gym.Env):
217
208
  rewards = np.mean(rewards) # Average the rewards of all agents
218
209
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
219
210
  dones = all(dones) # Done if all agents are done
220
- self.log_done = dones
221
- self.log_action = actions
222
- self.log_steps = self.steps
223
- episode_return += rewards
224
-
211
+
225
212
  if os.getenv('PRINT_STATS') == 'True': # We are trying to extract only the statistics for the PPO algorithm
213
+ self.number_of_steps += 1
214
+ self.episode_return += rewards
226
215
  if self.number_of_steps >= num_timesteps:
227
- self.episode_returns.append(episode_return)
216
+ self.episode_returns.append(self.episode_return)
228
217
  self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
229
218
  self.episode_mean_remaining_energy.append(np.mean(self.remaining_energy))
230
219
  self.episode_total_consumption_energy.append(np.sum(initial_energy - self.remaining_energy))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.178
3
+ Version: 3.0.180
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=u596NUGuugLKs4xG38CdXc1ChDTjdSFE4qwRq07dSco,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=xXwNW7X-pFQT0T_vJwI7WIkoAhUhtmz7nTEokL9d30Q,25660
4
+ gym_examples-3.0.180.dist-info/METADATA,sha256=esLOv32LCP3zP5pOa-zczAQTsz0ZSha7VqVAL0pcsNg,412
5
+ gym_examples-3.0.180.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.180.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.180.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=dKB7fxf-b5wOgFhNlcNdhFqGY0_sagdM3FVbJyd2xBM,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=MsDYLY0-6ngqgziKcJ5BET701GWX6OU1qoh3FMTezcs,26238
4
- gym_examples-3.0.178.dist-info/METADATA,sha256=zRHR4aBsr9tc5dwMeqysMfhLm8823FOnSCj7tph9DaM,412
5
- gym_examples-3.0.178.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.178.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.178.dist-info/RECORD,,