gym-examples 3.0.178__py3-none-any.whl → 3.0.179__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.178"
9
+ __version__ = "3.0.179"
@@ -55,12 +55,9 @@ class WSNRoutingEnv(gym.Env):
55
55
  def __init__(self, n_sensors = 20, coverage_radius=(upper_bound - lower_bound)/4):
56
56
 
57
57
  super(WSNRoutingEnv, self).__init__()
58
- self.log_done = None # Log the done status of the environment
59
- self.log_action = None # Log the action taken by the agent
60
- self.log_steps = None # Log the number of steps taken by the agent
61
58
 
62
59
  # Initialize list of episode metrics
63
- episode_return = None
60
+ episode_return = 0
64
61
  self.number_of_steps = 0 # Total number of steps taken by the agent since the beginning of the training
65
62
  self.episode_returns = []
66
63
  self.episode_std_remaining_energy = []
@@ -102,10 +99,7 @@ class WSNRoutingEnv(gym.Env):
102
99
  self.episode_packet_delivery_ratio.append(self.packet_delivery_ratio)
103
100
  self.episode_network_lifetime.append(self.network_lifetime)
104
101
  self.episode_average_latency.append(self.average_latency)
105
- print(f"Episode: {self.episode_count}")
106
- print(f"This episode ends with # Steps: {self.log_steps}")
107
- print(f"This episode ends with Done: {self.log_done}")
108
- print(f"This episode ends with Action: {self.log_action}")
102
+ print(f"Episode: {self.episode_count}")
109
103
  print(self.get_metrics())
110
104
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
111
105
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
@@ -131,9 +125,7 @@ class WSNRoutingEnv(gym.Env):
131
125
 
132
126
  def step(self, actions):
133
127
  actions = [actions[i] for i in range(self.n_agents)] # We want to go back from the MultiDiscrete action space to a tuple of tuple of Discrete action spaces
134
- self.steps += 1
135
- if os.getenv('PRINT_STATS') == 'True':
136
- self.number_of_steps += 1
128
+ self.steps += 1
137
129
  rewards = [0] * self.n_sensors
138
130
  dones = [False] * self.n_sensors
139
131
  for i, action in enumerate(actions):
@@ -217,12 +209,10 @@ class WSNRoutingEnv(gym.Env):
217
209
  rewards = np.mean(rewards) # Average the rewards of all agents
218
210
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
219
211
  dones = all(dones) # Done if all agents are done
220
- self.log_done = dones
221
- self.log_action = actions
222
- self.log_steps = self.steps
223
- episode_return += rewards
224
-
212
+
225
213
  if os.getenv('PRINT_STATS') == 'True': # We are trying to extract only the statistics for the PPO algorithm
214
+ self.number_of_steps += 1
215
+ episode_return += rewards
226
216
  if self.number_of_steps >= num_timesteps:
227
217
  self.episode_returns.append(episode_return)
228
218
  self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.178
3
+ Version: 3.0.179
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=yWn262J5hkFmXghnz7ERGnccBp9JEKqIZpFj1-w6zPM,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=5FKrURpUWGU5FAzX45F4TbThyGTKbVnkO6Em9yoD_vk,25668
4
+ gym_examples-3.0.179.dist-info/METADATA,sha256=fFWcwa3cq8RtdyFWjehbkAXWNbdOLOsnEisEOFdfIZ4,412
5
+ gym_examples-3.0.179.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.179.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.179.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=dKB7fxf-b5wOgFhNlcNdhFqGY0_sagdM3FVbJyd2xBM,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=MsDYLY0-6ngqgziKcJ5BET701GWX6OU1qoh3FMTezcs,26238
4
- gym_examples-3.0.178.dist-info/METADATA,sha256=zRHR4aBsr9tc5dwMeqysMfhLm8823FOnSCj7tph9DaM,412
5
- gym_examples-3.0.178.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.178.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.178.dist-info/RECORD,,