gym-examples 3.0.177__py3-none-any.whl → 3.0.179__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.177"
9
+ __version__ = "3.0.179"
@@ -55,11 +55,9 @@ class WSNRoutingEnv(gym.Env):
55
55
  def __init__(self, n_sensors = 20, coverage_radius=(upper_bound - lower_bound)/4):
56
56
 
57
57
  super(WSNRoutingEnv, self).__init__()
58
- self.log_done = None # Log the done status of the environment
59
- self.log_action = None # Log the action taken by the agent
60
- self.log_steps = None # Log the number of steps taken by the agent
61
58
 
62
59
  # Initialize list of episode metrics
60
+ episode_return = 0
63
61
  self.number_of_steps = 0 # Total number of steps taken by the agent since the beginning of the training
64
62
  self.episode_returns = []
65
63
  self.episode_std_remaining_energy = []
@@ -101,10 +99,7 @@ class WSNRoutingEnv(gym.Env):
101
99
  self.episode_packet_delivery_ratio.append(self.packet_delivery_ratio)
102
100
  self.episode_network_lifetime.append(self.network_lifetime)
103
101
  self.episode_average_latency.append(self.average_latency)
104
- print(f"Episode: {self.episode_count}")
105
- print(f"This episode ends with # Steps: {self.log_steps}")
106
- print(f"This episode ends with Done: {self.log_done}")
107
- print(f"This episode ends with Action: {self.log_action}")
102
+ print(f"Episode: {self.episode_count}")
108
103
  print(self.get_metrics())
109
104
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
110
105
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
@@ -130,9 +125,7 @@ class WSNRoutingEnv(gym.Env):
130
125
 
131
126
  def step(self, actions):
132
127
  actions = [actions[i] for i in range(self.n_agents)] # We want to go back from the MultiDiscrete action space to a tuple of tuple of Discrete action spaces
133
- self.steps += 1
134
- if os.getenv('PRINT_STATS') == 'True':
135
- self.number_of_steps += 1
128
+ self.steps += 1
136
129
  rewards = [0] * self.n_sensors
137
130
  dones = [False] * self.n_sensors
138
131
  for i, action in enumerate(actions):
@@ -216,12 +209,10 @@ class WSNRoutingEnv(gym.Env):
216
209
  rewards = np.mean(rewards) # Average the rewards of all agents
217
210
  # print(f"Step: {self.steps}, Rewards: {rewards}, Done: {dones}")
218
211
  dones = all(dones) # Done if all agents are done
219
- self.log_done = dones
220
- self.log_action = actions
221
- self.log_steps = self.steps
222
- episode_return += rewards
223
-
212
+
224
213
  if os.getenv('PRINT_STATS') == 'True': # We are trying to extract only the statistics for the PPO algorithm
214
+ self.number_of_steps += 1
215
+ episode_return += rewards
225
216
  if self.number_of_steps >= num_timesteps:
226
217
  self.episode_returns.append(episode_return)
227
218
  self.episode_std_remaining_energy.append(np.std(self.remaining_energy))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.177
3
+ Version: 3.0.179
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=yWn262J5hkFmXghnz7ERGnccBp9JEKqIZpFj1-w6zPM,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=5FKrURpUWGU5FAzX45F4TbThyGTKbVnkO6Em9yoD_vk,25668
4
+ gym_examples-3.0.179.dist-info/METADATA,sha256=fFWcwa3cq8RtdyFWjehbkAXWNbdOLOsnEisEOFdfIZ4,412
5
+ gym_examples-3.0.179.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.179.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.179.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=j60kGbCc8FuDrR2oC1Aj0dXR1XU7IFCPNOHTRS7pqSw,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=iTa-ZOhp1dcQD01KfqB70UbJQI79B9wQeY6fkRpz_rE,26207
4
- gym_examples-3.0.177.dist-info/METADATA,sha256=m1AYDNC878oKPiGZ4dJcOEaxak6JFdLUvEuvSU31yoc,412
5
- gym_examples-3.0.177.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.177.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.177.dist-info/RECORD,,