gym-examples 3.0.135__py3-none-any.whl → 3.0.137__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.135"
9
+ __version__ = "3.0.137"
@@ -59,19 +59,11 @@ class WSNRoutingEnv(gym.Env):
59
59
  # Initialize the position of the sensors randomly
60
60
 
61
61
  # Define observation space
62
- # self.observation_space = Tuple(
63
- # tuple([self._get_observation_space() for _ in range(self.n_sensors)])
64
- # )
65
-
66
- self.observation_space = gym.spaces.Dict({
67
- 'remaining_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(self.n_agents,), dtype=np.float32),
68
- 'consumption_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(self.n_agents,), dtype=np.float32),
69
- 'sensor_positions': gym.spaces.Box(low=lower_bound, high=upper_bound, shape=(self.n_agents, 2), dtype=np.float32),
70
- 'number_of_packets': gym.spaces.Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(self.n_agents,), dtype=int)
71
- })
62
+ self.observation_space = Tuple(
63
+ tuple([self._get_observation_space() for _ in range(self.n_sensors)])
64
+ )
72
65
 
73
- # self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
74
- self.action_space = gym.spaces.MultiDiscrete([self.n_sensors + 1] * self.n_agents)
66
+ self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
75
67
 
76
68
  self.reset()
77
69
 
@@ -181,38 +173,21 @@ class WSNRoutingEnv(gym.Env):
181
173
 
182
174
  return self._get_obs(), rewards, dones, {}
183
175
 
184
- # def _get_obs(self):
185
- # return [{'remaining_energy': np.array([e]),
186
- # 'consumption_energy': np.array([initial_energy - e]),
187
- # 'sensor_positions': p,
188
- # 'number_of_packets': np.array([d])
189
- # } for e, p, d in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)]
190
-
191
- # def _get_observation_space(self):
192
- # return Dict({
193
- # 'remaining_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
194
- # 'consumption_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
195
- # 'sensor_positions': Box(low=lower_bound, high=upper_bound, shape=(2,), dtype=np.float64),
196
- # 'number_of_packets': Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(1,), dtype=int)
197
- # })
198
-
199
176
  def _get_obs(self):
200
- return {
201
- 'remaining_energy': np.array(self.remaining_energy),
202
- 'consumption_energy': np.array([initial_energy - e for e in self.remaining_energy]),
203
- 'sensor_positions': np.stack(self.sensor_positions, axis=0),
204
- 'number_of_packets': np.array(self.number_of_packets)
205
- }
177
+ return [{'remaining_energy': np.array([e]),
178
+ 'consumption_energy': np.array([initial_energy - e]),
179
+ 'sensor_positions': p,
180
+ 'number_of_packets': np.array([d])
181
+ } for e, p, d in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)]
206
182
 
207
183
  def _get_observation_space(self):
208
- return gym.spaces.Dict({
209
- 'remaining_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
210
- 'consumption_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
211
- 'sensor_positions': gym.spaces.Box(low=lower_bound, high=upper_bound, shape=(len(self.sensor_positions), 2), dtype=np.float32),
212
- 'number_of_packets': gym.spaces.Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(len(self.number_of_packets),), dtype=int)
184
+ return Dict({
185
+ 'remaining_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
186
+ 'consumption_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
187
+ 'sensor_positions': Box(low=lower_bound, high=upper_bound, shape=(2,), dtype=np.float64),
188
+ 'number_of_packets': Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(1,), dtype=int)
213
189
  })
214
190
 
215
-
216
191
  def get_state(self):
217
192
  return self._get_obs()
218
193
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.135
3
+ Version: 3.0.137
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=EdR1SDwVV8SzSIJ4Gr54QXNHDqfRN9OQuvVu86vVSZ4,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=baMc1CiZz4NgtfUQ8LJW3057TCL9dPnuNEsreHMsSzs,21517
4
+ gym_examples-3.0.137.dist-info/METADATA,sha256=ybEfreDxfH-l3TFQdMGYJ4KBxunwS4ALQkGqcROtcAg,412
5
+ gym_examples-3.0.137.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.137.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.137.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=AtaFL7DdMIJNpqPaITYYoHuygF_KlV9TJ_6h7tHuVh0,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=HSTtatueYT5XWeAxyNhryTdoaGoB3n9h0zdRZ_K9Q84,23236
4
- gym_examples-3.0.135.dist-info/METADATA,sha256=WbDIlcgIXn1PoECyUQJVa783GuenQxz2bfaTDzaZSHA,412
5
- gym_examples-3.0.135.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.135.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.135.dist-info/RECORD,,