gym-examples 3.0.133__py3-none-any.whl → 3.0.134__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.133"
9
+ __version__ = "3.0.134"
@@ -59,10 +59,19 @@ class WSNRoutingEnv(gym.Env):
59
59
  # Initialize the position of the sensors randomly
60
60
 
61
61
  # Define observation space
62
- self.observation_space = Tuple(
63
- tuple([self._get_observation_space() for _ in range(self.n_sensors)])
64
- )
65
- self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
62
+ # self.observation_space = Tuple(
63
+ # tuple([self._get_observation_space() for _ in range(self.n_sensors)])
64
+ # )
65
+
66
+ self.observation_space = gym.spaces.Dict({
67
+ 'remaining_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
68
+ 'consumption_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
69
+ 'sensor_positions': gym.spaces.Box(low=lower_bound, high=upper_bound, shape=(len(self.sensor_positions), 2), dtype=np.float32),
70
+ 'number_of_packets': gym.spaces.Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(len(self.number_of_packets),), dtype=int)
71
+ })
72
+
73
+ # self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
74
+ self.action_space = gym.spaces.MultiDiscrete([self.n_sensors + 1] * self.n_agents)
66
75
 
67
76
  self.reset()
68
77
 
@@ -179,28 +188,31 @@ class WSNRoutingEnv(gym.Env):
179
188
  # 'number_of_packets': np.array([d])
180
189
  # } for e, p, d in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)]
181
190
 
182
- def _get_obs(self):
183
- remaining_energy = np.array([e for e, _, _ in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)])
184
- consumption_energy = np.array([initial_energy - e for e, _, _ in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)])
185
- sensor_positions = np.stack(self.sensor_positions, axis=0)
186
- number_of_packets = np.array([d for _, _, d in zip(self.remaining_energy, self.sensor_positions, self.number_of_packets)])
191
+ # def _get_observation_space(self):
192
+ # return Dict({
193
+ # 'remaining_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
194
+ # 'consumption_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
195
+ # 'sensor_positions': Box(low=lower_bound, high=upper_bound, shape=(2,), dtype=np.float64),
196
+ # 'number_of_packets': Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(1,), dtype=int)
197
+ # })
187
198
 
199
+ def _get_obs(self):
188
200
  return {
189
- 'remaining_energy': remaining_energy,
190
- 'consumption_energy': consumption_energy,
191
- 'sensor_positions': sensor_positions,
192
- 'number_of_packets': number_of_packets
201
+ 'remaining_energy': np.array(self.remaining_energy),
202
+ 'consumption_energy': np.array([initial_energy - e for e in self.remaining_energy]),
203
+ 'sensor_positions': np.stack(self.sensor_positions, axis=0),
204
+ 'number_of_packets': np.array(self.number_of_packets)
193
205
  }
194
206
 
195
-
196
207
  def _get_observation_space(self):
197
- return Dict({
198
- 'remaining_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
199
- 'consumption_energy': Box(low=0, high=initial_energy, shape=(1,), dtype=np.float64),
200
- 'sensor_positions': Box(low=lower_bound, high=upper_bound, shape=(2,), dtype=np.float64),
201
- 'number_of_packets': Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(1,), dtype=int)
208
+ return gym.spaces.Dict({
209
+ 'remaining_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
210
+ 'consumption_energy': gym.spaces.Box(low=0, high=initial_energy, shape=(len(self.remaining_energy),), dtype=np.float32),
211
+ 'sensor_positions': gym.spaces.Box(low=lower_bound, high=upper_bound, shape=(len(self.sensor_positions), 2), dtype=np.float32),
212
+ 'number_of_packets': gym.spaces.Box(low=0, high=self.n_sensors * initial_number_of_packets + 1, shape=(len(self.number_of_packets),), dtype=int)
202
213
  })
203
214
 
215
+
204
216
  def get_state(self):
205
217
  return self._get_obs()
206
218
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.133
3
+ Version: 3.0.134
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=NDW_AoYQPwLsSSYhRWfejgVCkMyXx98eNpLQEYLe4-8,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=dwIYGkIGyeuhF2jmq4WoOGcgzN2ytfAqrU-WPIIxoOI,23289
4
+ gym_examples-3.0.134.dist-info/METADATA,sha256=ZBMLM_U-MRZze2R6hKGKYG9kcoO5sdoYd2a15ytT-68,412
5
+ gym_examples-3.0.134.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.134.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.134.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=31q77oyVfUPqhF9_jOEky-D3Zs6aIBDa-xeXPR1tMws,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=uiL4qIvGQBErxITIN5shoVinf_XxKpkVf1xQzjOt9wA,22277
4
- gym_examples-3.0.133.dist-info/METADATA,sha256=4yvoNgX-zLOio9dYCw1eqN2SEU9tBYsXn-gnTqUUFwc,412
5
- gym_examples-3.0.133.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.133.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.133.dist-info/RECORD,,