gym-examples 3.0.115__py3-none-any.whl → 3.0.116__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +19 -2
- {gym_examples-3.0.115.dist-info → gym_examples-3.0.116.dist-info}/METADATA +1 -1
- gym_examples-3.0.116.dist-info/RECORD +7 -0
- gym_examples-3.0.115.dist-info/RECORD +0 -7
- {gym_examples-3.0.115.dist-info → gym_examples-3.0.116.dist-info}/WHEEL +0 -0
- {gym_examples-3.0.115.dist-info → gym_examples-3.0.116.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -64,7 +64,9 @@ class WSNRoutingEnv(gym.Env):
|
|
64
64
|
)
|
65
65
|
self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
|
66
66
|
|
67
|
-
self.reset()
|
67
|
+
self.reset()
|
68
|
+
|
69
|
+
self.episode_count = 0
|
68
70
|
|
69
71
|
def reset(self):
|
70
72
|
self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
|
@@ -168,6 +170,8 @@ class WSNRoutingEnv(gym.Env):
|
|
168
170
|
|
169
171
|
self.get_metrics()
|
170
172
|
|
173
|
+
# rewards = self.compute_network_rewards()
|
174
|
+
|
171
175
|
return self._get_obs(), rewards, dones, {}
|
172
176
|
|
173
177
|
def _get_obs(self):
|
@@ -312,7 +316,20 @@ class WSNRoutingEnv(gym.Env):
|
|
312
316
|
|
313
317
|
return np.concatenate((rewards_energy, rewards_performance))
|
314
318
|
# return rewards_energy
|
315
|
-
|
319
|
+
|
320
|
+
def compute_network_rewards(self):
|
321
|
+
|
322
|
+
reward_consumption_energy = self.network_reward_consumption_energy()
|
323
|
+
reward_dispersion_remaining_energy = self.network_reward_dispersion_remaining_energy()
|
324
|
+
rewards_energy = np.array([reward_consumption_energy, reward_dispersion_remaining_energy])
|
325
|
+
|
326
|
+
reward_latency = self.compute_reward_latency()
|
327
|
+
reward_network_throughput = self.compute_reward_network_throughput()
|
328
|
+
reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
|
329
|
+
rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
|
330
|
+
|
331
|
+
return np.concatenate((rewards_energy, rewards_performance))
|
332
|
+
|
316
333
|
def network_reward_dispersion_remaining_energy(self):
|
317
334
|
'''
|
318
335
|
Compute the reward based on the standard deviation of the remaining energy at the network level
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=09z5Ln2_klc9N1PzBH7KMq9f_84BOOXU6jsoFyKP5V8,194
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=tCuaa3kAtzXd-EhWkRzGbfxw6A_v3jZ0U9OUBk9bcJ8,21567
|
4
|
+
gym_examples-3.0.116.dist-info/METADATA,sha256=aLxV_ifcG2NU1Pvt9PodOJz7ozlMEx7uhPagASu683k,412
|
5
|
+
gym_examples-3.0.116.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-3.0.116.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-3.0.116.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=4tutbZYDTaS04kfY-9VcMSXg5aYZvn5jWVUwXk7vzR8,194
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=XSRDyoJXewSwDBtHJJHGYarmWDbgX4qlG5HMVTeASTI,20762
|
4
|
-
gym_examples-3.0.115.dist-info/METADATA,sha256=N8sjWFwvyZ1IYM0Axh4HcwIzJkhzJxsLY4s7-x7z2lY,412
|
5
|
-
gym_examples-3.0.115.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-3.0.115.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-3.0.115.dist-info/RECORD,,
|
File without changes
|
File without changes
|