gym-examples 2.0.98__py3-none-any.whl → 2.0.101__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.98"
9
+ __version__ = "2.0.101"
@@ -135,7 +135,6 @@ class WSNRoutingEnv(gym.Env):
135
135
  # self.rewards_individual[i] = rewards[i]
136
136
  final_reward = np.sum(rewards[i])
137
137
  rewards[i] = final_reward
138
-
139
138
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
140
139
  # rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
141
140
 
@@ -286,33 +285,32 @@ class WSNRoutingEnv(gym.Env):
286
285
  reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
287
286
  reward_number_of_packets = self.compute_reward_number_of_packets(action)
288
287
 
289
- # return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
288
+ return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
290
289
  # return [reward_angle, reward_distance, reward_consumption_energy, reward_number_of_packets]
291
290
  # return [reward_angle, reward_distance, reward_dispersion_remaining_energy, reward_number_of_packets]
292
291
  # return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy]
293
- return [reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy]
294
292
 
295
- # def network_reward_dispersion_remaining_energy(self):
296
- # '''
297
- # Compute the reward based on the standard deviation of the remaining energy at the network level
298
- # '''
299
- # dispersion_remaining_energy = np.std(self.remaining_energy)
300
- # # Normalize the standard deviation of the remaining energy
301
- # max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
302
- # normalized_dispersion_remaining_energy = dispersion_remaining_energy / max_dispersion_remaining_energy
293
+ def network_reward_dispersion_remaining_energy(self):
294
+ '''
295
+ Compute the reward based on the standard deviation of the remaining energy at the network level
296
+ '''
297
+ dispersion_remaining_energy = np.std(self.remaining_energy)
298
+ # Normalize the standard deviation of the remaining energy
299
+ max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
300
+ normalized_dispersion_remaining_energy = dispersion_remaining_energy / max_dispersion_remaining_energy
303
301
 
304
- # return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
302
+ return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
305
303
 
306
- # def network_reward_consumption_energy(self):
307
- # '''
308
- # Compute the reward based on the total energy consumption (transmission, reception) at the network level
309
- # '''
310
- # total_energy = self.n_sensors * initial_energy - np.sum(self.remaining_energy)
311
- # # Normalize the total energy consumption
312
- # max_total_energy = self.n_sensors * initial_energy
313
- # normalized_total_energy = total_energy / max_total_energy
304
+ def network_reward_consumption_energy(self):
305
+ '''
306
+ Compute the reward based on the total energy consumption (transmission, reception) at the network level
307
+ '''
308
+ total_energy = self.n_sensors * initial_energy - np.sum(self.remaining_energy)
309
+ # Normalize the total energy consumption
310
+ max_total_energy = self.n_sensors * initial_energy
311
+ normalized_total_energy = total_energy / max_total_energy
314
312
 
315
- # return np.clip(1 - normalized_total_energy, 0, 1)
313
+ return np.clip(1 - normalized_total_energy, 0, 1)
316
314
 
317
315
  def integrate_mobility(self):
318
316
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.98
3
+ Version: 2.0.101
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=eZO_an4Ddj18Zw0LMd1ZNXyurLLujaT6-H45paeHudA,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=VIHeF9hoBoYYxiGN9W0Na2kVYYGLlwc66O-pC6X_GTs,17214
4
+ gym_examples-2.0.101.dist-info/METADATA,sha256=xABVZIeCirDgUEyFTgQYlzZzTGEtfyzhxJcL8qH9hVI,412
5
+ gym_examples-2.0.101.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.101.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.101.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=ORPaAk46ppx34i0A3omNhSm2vpJlts0_2ctV7Vnheeo,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=ETRV1OEBIADxTIvej9qHoINig9r6LIqFUVRycPzy-mU,17351
4
- gym_examples-2.0.98.dist-info/METADATA,sha256=921iJigPx_7zXGxVbXD8dD3Ig8sqtT-RCDE02QbkFCI,411
5
- gym_examples-2.0.98.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.98.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.98.dist-info/RECORD,,