gym-examples 2.0.98__py3-none-any.whl → 2.0.101__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +19 -21
- {gym_examples-2.0.98.dist-info → gym_examples-2.0.101.dist-info}/METADATA +1 -1
- gym_examples-2.0.101.dist-info/RECORD +7 -0
- gym_examples-2.0.98.dist-info/RECORD +0 -7
- {gym_examples-2.0.98.dist-info → gym_examples-2.0.101.dist-info}/WHEEL +0 -0
- {gym_examples-2.0.98.dist-info → gym_examples-2.0.101.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -135,7 +135,6 @@ class WSNRoutingEnv(gym.Env):
|
|
135
135
|
# self.rewards_individual[i] = rewards[i]
|
136
136
|
final_reward = np.sum(rewards[i])
|
137
137
|
rewards[i] = final_reward
|
138
|
-
|
139
138
|
# rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
140
139
|
# rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
141
140
|
|
@@ -286,33 +285,32 @@ class WSNRoutingEnv(gym.Env):
|
|
286
285
|
reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
|
287
286
|
reward_number_of_packets = self.compute_reward_number_of_packets(action)
|
288
287
|
|
289
|
-
|
288
|
+
return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
|
290
289
|
# return [reward_angle, reward_distance, reward_consumption_energy, reward_number_of_packets]
|
291
290
|
# return [reward_angle, reward_distance, reward_dispersion_remaining_energy, reward_number_of_packets]
|
292
291
|
# return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy]
|
293
|
-
return [reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy]
|
294
292
|
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
293
|
+
def network_reward_dispersion_remaining_energy(self):
|
294
|
+
'''
|
295
|
+
Compute the reward based on the standard deviation of the remaining energy at the network level
|
296
|
+
'''
|
297
|
+
dispersion_remaining_energy = np.std(self.remaining_energy)
|
298
|
+
# Normalize the standard deviation of the remaining energy
|
299
|
+
max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
|
300
|
+
normalized_dispersion_remaining_energy = dispersion_remaining_energy / max_dispersion_remaining_energy
|
303
301
|
|
304
|
-
|
302
|
+
return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
|
305
303
|
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
304
|
+
def network_reward_consumption_energy(self):
|
305
|
+
'''
|
306
|
+
Compute the reward based on the total energy consumption (transmission, reception) at the network level
|
307
|
+
'''
|
308
|
+
total_energy = self.n_sensors * initial_energy - np.sum(self.remaining_energy)
|
309
|
+
# Normalize the total energy consumption
|
310
|
+
max_total_energy = self.n_sensors * initial_energy
|
311
|
+
normalized_total_energy = total_energy / max_total_energy
|
314
312
|
|
315
|
-
|
313
|
+
return np.clip(1 - normalized_total_energy, 0, 1)
|
316
314
|
|
317
315
|
def integrate_mobility(self):
|
318
316
|
'''
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=eZO_an4Ddj18Zw0LMd1ZNXyurLLujaT6-H45paeHudA,194
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=VIHeF9hoBoYYxiGN9W0Na2kVYYGLlwc66O-pC6X_GTs,17214
|
4
|
+
gym_examples-2.0.101.dist-info/METADATA,sha256=xABVZIeCirDgUEyFTgQYlzZzTGEtfyzhxJcL8qH9hVI,412
|
5
|
+
gym_examples-2.0.101.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-2.0.101.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-2.0.101.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=ORPaAk46ppx34i0A3omNhSm2vpJlts0_2ctV7Vnheeo,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=ETRV1OEBIADxTIvej9qHoINig9r6LIqFUVRycPzy-mU,17351
|
4
|
-
gym_examples-2.0.98.dist-info/METADATA,sha256=921iJigPx_7zXGxVbXD8dD3Ig8sqtT-RCDE02QbkFCI,411
|
5
|
-
gym_examples-2.0.98.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-2.0.98.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-2.0.98.dist-info/RECORD,,
|
File without changes
|
File without changes
|