gym-examples 2.0.75__py3-none-any.whl → 2.0.77__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.75"
9
+ __version__ = "2.0.77"
@@ -132,19 +132,9 @@ class WSNRoutingEnv(gym.Env):
132
132
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
133
133
  rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
134
134
 
135
- # Call methods once and store results to avoid repeated calculations
136
- network_consumption_energy = self.network_reward_consumption_energy()
137
- network_dispersion_energy = self.network_reward_dispersion_remaining_energy()
138
135
  # Only proceed if network consumption energy is not zero to avoid unnecessary list comprehension
139
- if network_consumption_energy != 0:
140
- self.rewards_individual = [
141
- {"ind": r,
142
- "net_consumption_energy": network_consumption_energy,
143
- "net_dispersion_energy": network_dispersion_energy}
144
- for r in self.rewards_individual if r != 0
145
- ]
146
- else:
147
- self.rewards_individual = []
136
+ self.rewards_individual = [r for r in self.rewards_individual if ((r != 0) and (r[3] < 1))]
137
+
148
138
  # self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if ((r != 0) and (self.network_reward_consumption_energy() != 0))]
149
139
  for i in range(self.n_sensors):
150
140
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
@@ -283,7 +273,8 @@ class WSNRoutingEnv(gym.Env):
283
273
  reward_number_of_packets = self.compute_reward_number_of_packets(action)
284
274
 
285
275
  # return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
286
- return [reward_angle, reward_distance, reward_consumption_energy, reward_number_of_packets]
276
+ # return [reward_angle, reward_distance, reward_consumption_energy, reward_number_of_packets]
277
+ return [reward_angle, reward_distance, reward_number_of_packets]
287
278
 
288
279
  def network_reward_dispersion_remaining_energy(self):
289
280
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.75
3
+ Version: 2.0.77
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=SnKbKQ-A6nJGr_zxdY0mkzTXHxF2i5hRV_V-co2F0CE,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=Fct3VXMPwNUTZyLAAPGGq1RLG282VKnohIds_d1qqv8,16166
4
+ gym_examples-2.0.77.dist-info/METADATA,sha256=bd1lNeat-U4vFn2q_k6u1Ve_RycnBwsCmfdOGKZcCnI,411
5
+ gym_examples-2.0.77.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.77.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.77.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=KhqtzHp8-RurAAUjaZuxNFkP_xrA_6fX7nBcNDPOEfs,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=nzkby8VP2ADq4CUebDExqQwElLjdpdMr-bfLiaXd1qc,16620
4
- gym_examples-2.0.75.dist-info/METADATA,sha256=dUOLYGe9cogkJyf0aCriNRNVF1YcGYkwHLghm0FV6lY,411
5
- gym_examples-2.0.75.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.75.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.75.dist-info/RECORD,,