gym-examples 2.0.71__py3-none-any.whl → 2.0.73__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.71"
9
+ __version__ = "2.0.73"
@@ -317,11 +317,12 @@ class WSNRoutingEnv(gym.Env):
317
317
  Compute the reward based on the total energy consumption (transmission, reception) at the network level
318
318
  '''
319
319
  total_energy = np.sum(self.consumption_energy)
320
-
320
+ print(f"Inside network_reward_consumption_energy, total energy: {total_energy}")
321
321
  # Normalize the total energy consumption
322
- max_transmission_energy = self.transmission_energy(self.n_sensors * initial_number_of_packets, self.coverage_radius)
323
- max_reception_energy = self.reception_energy(self.n_sensors * initial_number_of_packets)
324
- normalized_total_energy = total_energy / (max_transmission_energy + max_reception_energy)
322
+ max_total_energy = self.n_sensors * initial_energy
323
+ print(f"Inside network_reward_consumption_energy, max total energy: {max_total_energy}")
324
+ normalized_total_energy = total_energy / max_total_energy
325
+ print(f"Inside network_reward_consumption_energy, normalized total energy: {normalized_total_energy}")
325
326
 
326
327
  return np.clip(1 - normalized_total_energy, 0, 1)
327
328
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.71
3
+ Version: 2.0.73
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=LnsUr0dHN4iXm9U9y-GKicgaPBWok_Yw28IYzLsF2nA,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=XSB2_uh4XSYJ8900Y91Hh4R3r37SeKsPZZHxU5uuQsk,18237
4
+ gym_examples-2.0.73.dist-info/METADATA,sha256=kg5dqMd3x68DFKeALLv0nD021r4gsivWJpx-6hJCI0Y,411
5
+ gym_examples-2.0.73.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.73.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.73.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=oIFKNEfjzmcQB27KrxtkT9n2F1EFKDl4m4tKpLiXJ00,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=IeJ9bEHxyvT7KsGadx2fbNQlT2ilRR82UOcAQPLgqbE,18135
4
- gym_examples-2.0.71.dist-info/METADATA,sha256=3tIpIys5j-gJZrdJZmFRZLKn7IaMnzw44mqQe-RFGYA,411
5
- gym_examples-2.0.71.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.71.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.71.dist-info/RECORD,,