gym-examples 2.0.64__py3-none-any.whl → 2.0.66__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +15 -1
- {gym_examples-2.0.64.dist-info → gym_examples-2.0.66.dist-info}/METADATA +1 -1
- gym_examples-2.0.66.dist-info/RECORD +7 -0
- gym_examples-2.0.64.dist-info/RECORD +0 -7
- {gym_examples-2.0.64.dist-info → gym_examples-2.0.66.dist-info}/WHEEL +0 -0
- {gym_examples-2.0.64.dist-info → gym_examples-2.0.66.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -130,7 +130,21 @@ class WSNRoutingEnv(gym.Env):
|
|
130
130
|
|
131
131
|
# rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
132
132
|
rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
133
|
-
|
133
|
+
|
134
|
+
# Call methods once and store results to avoid repeated calculations
|
135
|
+
network_consumption_energy = self.network_reward_consumption_energy()
|
136
|
+
network_dispersion_energy = self.network_reward_dispersion_remaining_energy()
|
137
|
+
# Only proceed if network consumption energy is not zero to avoid unnecessary list comprehension
|
138
|
+
if network_consumption_energy != 0:
|
139
|
+
self.rewards_individual = [
|
140
|
+
{"ind": r,
|
141
|
+
"net_consumption_energy": network_consumption_energy,
|
142
|
+
"net_dispersion_energy": network_dispersion_energy}
|
143
|
+
for r in self.rewards_individual if r != 0
|
144
|
+
]
|
145
|
+
else:
|
146
|
+
self.rewards_individual = []
|
147
|
+
# self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if ((r != 0) and (self.network_reward_consumption_energy() != 0))]
|
134
148
|
for i in range(self.n_sensors):
|
135
149
|
if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
|
136
150
|
dones[i] = True
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=u7b6xxMUojiVFajKmLl9xvGS2XfN1qhUxD0uqgd3RKA,193
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=OHQXnd90YAKd8QwxtPrflaoitx_vk4zKq2Lj_dtNYCA,16817
|
4
|
+
gym_examples-2.0.66.dist-info/METADATA,sha256=jHjDwC3qD7iq-EqlzXjY5UmCjwAuZCUcng9FbAzBNkM,411
|
5
|
+
gym_examples-2.0.66.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-2.0.66.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-2.0.66.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=vpYaHWxBDZC_6WxL3W4ndPCNXkgY_58hsYY-spz7IT0,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=JNjjrUYOiFRzWkCKeZREnB5-VKxotUC9j2Qxr1sVRzY,16066
|
4
|
-
gym_examples-2.0.64.dist-info/METADATA,sha256=y6u5YHjql0xtJdEx5EmcKhVcBlySL19HHrRZ2JmqTE0,411
|
5
|
-
gym_examples-2.0.64.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-2.0.64.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-2.0.64.dist-info/RECORD,,
|
File without changes
|
File without changes
|