gym-examples 2.0.64__py3-none-any.whl → 2.0.66__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.64"
9
+ __version__ = "2.0.66"
@@ -130,7 +130,21 @@ class WSNRoutingEnv(gym.Env):
130
130
 
131
131
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
132
132
  rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
133
- self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if ((r != 0) and (self.network_reward_consumption_energy() != 0))]
133
+
134
+ # Call methods once and store results to avoid repeated calculations
135
+ network_consumption_energy = self.network_reward_consumption_energy()
136
+ network_dispersion_energy = self.network_reward_dispersion_remaining_energy()
137
+ # Only proceed if network consumption energy is not zero to avoid unnecessary list comprehension
138
+ if network_consumption_energy != 0:
139
+ self.rewards_individual = [
140
+ {"ind": r,
141
+ "net_consumption_energy": network_consumption_energy,
142
+ "net_dispersion_energy": network_dispersion_energy}
143
+ for r in self.rewards_individual if r != 0
144
+ ]
145
+ else:
146
+ self.rewards_individual = []
147
+ # self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if ((r != 0) and (self.network_reward_consumption_energy() != 0))]
134
148
  for i in range(self.n_sensors):
135
149
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
136
150
  dones[i] = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.64
3
+ Version: 2.0.66
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=u7b6xxMUojiVFajKmLl9xvGS2XfN1qhUxD0uqgd3RKA,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=OHQXnd90YAKd8QwxtPrflaoitx_vk4zKq2Lj_dtNYCA,16817
4
+ gym_examples-2.0.66.dist-info/METADATA,sha256=jHjDwC3qD7iq-EqlzXjY5UmCjwAuZCUcng9FbAzBNkM,411
5
+ gym_examples-2.0.66.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.66.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.66.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=vpYaHWxBDZC_6WxL3W4ndPCNXkgY_58hsYY-spz7IT0,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=JNjjrUYOiFRzWkCKeZREnB5-VKxotUC9j2Qxr1sVRzY,16066
4
- gym_examples-2.0.64.dist-info/METADATA,sha256=y6u5YHjql0xtJdEx5EmcKhVcBlySL19HHrRZ2JmqTE0,411
5
- gym_examples-2.0.64.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.64.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.64.dist-info/RECORD,,