gym-examples 2.0.61__py3-none-any.whl → 2.0.62__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.61"
9
+ __version__ = "2.0.62"
@@ -66,22 +66,13 @@ class WSNRoutingEnv(gym.Env):
66
66
  self.action_space = Tuple(tuple([Discrete(self.n_sensors + 1)] * self.n_agents))
67
67
 
68
68
  self.reset()
69
-
70
- print("\n=================================================")
71
- print("WSN Routing Environment initialized")
72
- print(f"consumption_energy: {self.consumption_energy}")
73
- print(f"remaining_energy: {self.remaining_energy}")
74
- print(f"sensor_positions: {self.sensor_positions}")
75
- print(f"distance_to_base: {self.distance_to_base}")
76
- print(f"number_of_packets: {self.number_of_packets}")
77
- print("==================================================\n")
78
69
 
79
70
 
80
71
  def reset(self):
81
72
  # print individual rewards
82
- # print("\n=================================================")
83
- # print(f"Rewards: {self.rewards_individual}")
84
- # print("==================================================\n")
73
+ print("\n=================================================")
74
+ print(f"Rewards: {self.rewards_individual}")
75
+ print("==================================================\n")
85
76
  # Initialize the position of the sensors randomly
86
77
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
87
78
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
@@ -136,7 +127,7 @@ class WSNRoutingEnv(gym.Env):
136
127
 
137
128
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
138
129
  rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
139
- self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if r != 0]
130
+ self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if ((r != 0) and (self.network_reward_consumption_energy() != 0))]
140
131
  for i in range(self.n_sensors):
141
132
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
142
133
  dones[i] = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.61
3
+ Version: 2.0.62
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=UdsOi_uvrx2c0p-hT7p4HgGT7LersLo1EN8BSlPLFYI,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=_Ep8jV3UwkXUAF2jcBlJtgjodw2FQmpH1KLGpIcncLY,15949
4
+ gym_examples-2.0.62.dist-info/METADATA,sha256=d7MCqv53jpHnXR18oCGf4yFag3V_qa7sdosuZwPjWCE,411
5
+ gym_examples-2.0.62.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.62.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.62.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=9euimFjmf1gAXbpVoCgKqFAWktP5CZF6UP3QMekzK94,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=QLjn-dt6RSXPPukeICx5rDZoMePaPvRYP8xGIg4jOvc,16407
4
- gym_examples-2.0.61.dist-info/METADATA,sha256=7koAmC51NdPOd0jwdT1xAzWe8oijwbq5viDSa7ebFGU,411
5
- gym_examples-2.0.61.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.61.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.61.dist-info/RECORD,,