gym-examples 2.0.59__py3-none-any.whl → 2.0.61__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.59"
9
+ __version__ = "2.0.61"
@@ -67,11 +67,21 @@ class WSNRoutingEnv(gym.Env):
67
67
 
68
68
  self.reset()
69
69
 
70
- def reset(self):
71
- # print individual rewards
72
70
  print("\n=================================================")
73
- print(f"Rewards: {self.rewards_individual}")
71
+ print("WSN Routing Environment initialized")
72
+ print(f"consumption_energy: {self.consumption_energy}")
73
+ print(f"remaining_energy: {self.remaining_energy}")
74
+ print(f"sensor_positions: {self.sensor_positions}")
75
+ print(f"distance_to_base: {self.distance_to_base}")
76
+ print(f"number_of_packets: {self.number_of_packets}")
74
77
  print("==================================================\n")
78
+
79
+
80
+ def reset(self):
81
+ # print individual rewards
82
+ # print("\n=================================================")
83
+ # print(f"Rewards: {self.rewards_individual}")
84
+ # print("==================================================\n")
75
85
  # Initialize the position of the sensors randomly
76
86
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
77
87
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
@@ -126,7 +136,7 @@ class WSNRoutingEnv(gym.Env):
126
136
 
127
137
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
128
138
  rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
129
- self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual]
139
+ self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual if r != 0]
130
140
  for i in range(self.n_sensors):
131
141
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
132
142
  dones[i] = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.59
3
+ Version: 2.0.61
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=9euimFjmf1gAXbpVoCgKqFAWktP5CZF6UP3QMekzK94,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=QLjn-dt6RSXPPukeICx5rDZoMePaPvRYP8xGIg4jOvc,16407
4
+ gym_examples-2.0.61.dist-info/METADATA,sha256=7koAmC51NdPOd0jwdT1xAzWe8oijwbq5viDSa7ebFGU,411
5
+ gym_examples-2.0.61.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.61.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.61.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=8Z_ivueILF9vTjF7kQLbPrrIA5-s94fUy-HF4axGjLg,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=lPU-0-lR4FbeSkV3UoGzb59RhUhJ8tbsqaeSmlh3Wm0,15873
4
- gym_examples-2.0.59.dist-info/METADATA,sha256=54757bIPkFSiCUj4XW7gSUSGZnEaYnLwjqmpm5cYuGc,411
5
- gym_examples-2.0.59.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.59.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.59.dist-info/RECORD,,