gym-examples 2.0.57__py3-none-any.whl → 2.0.59__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.57"
9
+ __version__ = "2.0.59"
@@ -70,7 +70,7 @@ class WSNRoutingEnv(gym.Env):
70
70
  def reset(self):
71
71
  # print individual rewards
72
72
  print("\n=================================================")
73
- print(f"Rewards: {[[self.rewards_individual[i], self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for i in range(self.n_sensors)]}")
73
+ print(f"Rewards: {self.rewards_individual}")
74
74
  print("==================================================\n")
75
75
  # Initialize the position of the sensors randomly
76
76
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
@@ -126,7 +126,7 @@ class WSNRoutingEnv(gym.Env):
126
126
 
127
127
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
128
128
  rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
129
- self.rewards_individual = [[r, self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for r in self.rewards_individual]
129
+ self.rewards_individual = [{"ind": r, "net_consumption_energy": self.network_reward_consumption_energy(), "net_dispersion_energy": self.network_reward_dispersion_remaining_energy()} for r in self.rewards_individual]
130
130
  for i in range(self.n_sensors):
131
131
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
132
132
  dones[i] = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.57
3
+ Version: 2.0.59
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=8Z_ivueILF9vTjF7kQLbPrrIA5-s94fUy-HF4axGjLg,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=lPU-0-lR4FbeSkV3UoGzb59RhUhJ8tbsqaeSmlh3Wm0,15873
4
+ gym_examples-2.0.59.dist-info/METADATA,sha256=54757bIPkFSiCUj4XW7gSUSGZnEaYnLwjqmpm5cYuGc,411
5
+ gym_examples-2.0.59.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.59.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.59.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=01VDdzN_SbYr_5dKx66uCyvGnM5ZLNPARRNolC5y5io,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=GWO7toTzhMb8_knk9IqylWYmKdMGIu-_vjUDaOy93wE,15946
4
- gym_examples-2.0.57.dist-info/METADATA,sha256=xx2bmn5KT-dwZioEANxTHjglopFVesbUevoM6RPHzKk,411
5
- gym_examples-2.0.57.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.57.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.57.dist-info/RECORD,,