gym-examples 2.0.55__py3-none-any.whl → 2.0.57__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +15 -9
- {gym_examples-2.0.55.dist-info → gym_examples-2.0.57.dist-info}/METADATA +1 -1
- gym_examples-2.0.57.dist-info/RECORD +7 -0
- gym_examples-2.0.55.dist-info/RECORD +0 -7
- {gym_examples-2.0.55.dist-info → gym_examples-2.0.57.dist-info}/WHEEL +0 -0
- {gym_examples-2.0.55.dist-info → gym_examples-2.0.57.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -57,6 +57,7 @@ class WSNRoutingEnv(gym.Env):
|
|
57
57
|
self.episode_count = 0
|
58
58
|
self.scale_displacement = 0.01 * (upper_bound - lower_bound) # scale of the random displacement of the sensors
|
59
59
|
self.epsilon = 1e-10 # small value to avoid division by zero
|
60
|
+
self.rewards_individual = [0] * self.n_sensors
|
60
61
|
|
61
62
|
# Define observation space
|
62
63
|
self.observation_space = Tuple(
|
@@ -67,7 +68,10 @@ class WSNRoutingEnv(gym.Env):
|
|
67
68
|
self.reset()
|
68
69
|
|
69
70
|
def reset(self):
|
70
|
-
|
71
|
+
# print individual rewards
|
72
|
+
print("\n=================================================")
|
73
|
+
print(f"Rewards: {[[self.rewards_individual[i], self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for i in range(self.n_sensors)]}")
|
74
|
+
print("==================================================\n")
|
71
75
|
# Initialize the position of the sensors randomly
|
72
76
|
self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
|
73
77
|
self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
|
@@ -80,6 +84,7 @@ class WSNRoutingEnv(gym.Env):
|
|
80
84
|
|
81
85
|
def step(self, actions):
|
82
86
|
rewards = [0] * self.n_sensors
|
87
|
+
self.rewards_individual = [0] * self.n_sensors
|
83
88
|
dones = [False] * self.n_sensors
|
84
89
|
for i, action in enumerate(actions):
|
85
90
|
|
@@ -115,12 +120,13 @@ class WSNRoutingEnv(gym.Env):
|
|
115
120
|
# Calculate final reward
|
116
121
|
# rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
|
117
122
|
# final_reward = net(rewards_individual)
|
123
|
+
self.rewards_individual[i] = rewards[i]
|
118
124
|
final_reward = np.sum(rewards[i])
|
119
125
|
rewards[i] = final_reward
|
120
|
-
|
121
|
-
|
122
|
-
rewards = [0.5 * r + 0.5 * (
|
123
|
-
|
126
|
+
|
127
|
+
# rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
128
|
+
rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
129
|
+
self.rewards_individual = [[r, self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for r in self.rewards_individual]
|
124
130
|
for i in range(self.n_sensors):
|
125
131
|
if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
|
126
132
|
dones[i] = True
|
@@ -212,14 +218,14 @@ class WSNRoutingEnv(gym.Env):
|
|
212
218
|
distance = np.linalg.norm(self.sensor_positions[i] - self.sensor_positions[action])
|
213
219
|
transmission_energy = self.transmission_energy(self.number_of_packets[i], distance)
|
214
220
|
reception_energy = self.reception_energy(self.number_of_packets[i])
|
215
|
-
|
216
|
-
total_energy = transmission_energy
|
221
|
+
total_energy = transmission_energy + reception_energy
|
222
|
+
# total_energy = transmission_energy
|
217
223
|
|
218
224
|
# Normalize the total energy consumption
|
219
225
|
max_transmission_energy = self.transmission_energy(self.n_sensors * initial_number_of_packets, self.coverage_radius)
|
220
226
|
max_reception_energy = self.reception_energy(self.n_sensors * initial_number_of_packets)
|
221
|
-
|
222
|
-
max_total_energy = max_transmission_energy
|
227
|
+
max_total_energy = max_transmission_energy + max_reception_energy
|
228
|
+
# max_total_energy = max_transmission_energy
|
223
229
|
normalized_total_energy = total_energy / max_total_energy
|
224
230
|
|
225
231
|
return np.clip(1 - normalized_total_energy, 0, 1)
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=01VDdzN_SbYr_5dKx66uCyvGnM5ZLNPARRNolC5y5io,193
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=GWO7toTzhMb8_knk9IqylWYmKdMGIu-_vjUDaOy93wE,15946
|
4
|
+
gym_examples-2.0.57.dist-info/METADATA,sha256=xx2bmn5KT-dwZioEANxTHjglopFVesbUevoM6RPHzKk,411
|
5
|
+
gym_examples-2.0.57.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-2.0.57.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-2.0.57.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=vnWhhwCczJ-SFYD9e9tkVw0v8gya25yTvJHPjBeSm-U,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=aoL7il1bOsPoyBp7HchTRRpumVMIiBAD7kDD53jIck0,15411
|
4
|
-
gym_examples-2.0.55.dist-info/METADATA,sha256=BAqN3wGi55dKSDpBVPjBbSXbCMccK7M8jIO2Ry1AnXY,411
|
5
|
-
gym_examples-2.0.55.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-2.0.55.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-2.0.55.dist-info/RECORD,,
|
File without changes
|
File without changes
|