gym-examples 2.0.55__py3-none-any.whl → 2.0.56__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.55"
9
+ __version__ = "2.0.56"
@@ -57,6 +57,7 @@ class WSNRoutingEnv(gym.Env):
57
57
  self.episode_count = 0
58
58
  self.scale_displacement = 0.01 * (upper_bound - lower_bound) # scale of the random displacement of the sensors
59
59
  self.epsilon = 1e-10 # small value to avoid division by zero
60
+ self.rewards_individual = [0] * self.n_sensors
60
61
 
61
62
  # Define observation space
62
63
  self.observation_space = Tuple(
@@ -67,7 +68,10 @@ class WSNRoutingEnv(gym.Env):
67
68
  self.reset()
68
69
 
69
70
  def reset(self):
70
-
71
+ # print individual rewards
72
+ print("\n=================================================")
73
+ print(f"Rewards: {[[self.rewards_individual[i], self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for i in range(self.n_sensors)]}")
74
+ print("==================================================\n")
71
75
  # Initialize the position of the sensors randomly
72
76
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
73
77
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
@@ -80,6 +84,7 @@ class WSNRoutingEnv(gym.Env):
80
84
 
81
85
  def step(self, actions):
82
86
  rewards = [0] * self.n_sensors
87
+ self.rewards_individual = [0] * self.n_sensors
83
88
  dones = [False] * self.n_sensors
84
89
  for i, action in enumerate(actions):
85
90
 
@@ -115,12 +120,13 @@ class WSNRoutingEnv(gym.Env):
115
120
  # Calculate final reward
116
121
  # rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
117
122
  # final_reward = net(rewards_individual)
123
+ self.rewards_individual[i] = rewards[i]
118
124
  final_reward = np.sum(rewards[i])
119
125
  rewards[i] = final_reward
120
- print("\n=================================================")
121
- print(f"Rewards: {[[rewards[i], self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for i in range(self.n_sensors)]}")
122
- rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
123
- print("==================================================\n")
126
+
127
+ # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
128
+ rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
129
+ self.rewards_individual = [[r, self.network_reward_consumption_energy(), self.network_reward_dispersion_remaining_energy()] for r in self.rewards_individual]
124
130
  for i in range(self.n_sensors):
125
131
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
126
132
  dones[i] = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.55
3
+ Version: 2.0.56
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=-8H0EIk-T59ft4kFq7dzi45XB4wOWQCne41r8wfDGYE,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=-GO39UyP9QQtYfStnQt54T9y0AtdKiVfcT7xGWN9ZEc,15946
4
+ gym_examples-2.0.56.dist-info/METADATA,sha256=opSMBzLox7YL6SlxOsWcQ86oELZseBAyq1w0O4_vGcU,411
5
+ gym_examples-2.0.56.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.56.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.56.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=vnWhhwCczJ-SFYD9e9tkVw0v8gya25yTvJHPjBeSm-U,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=aoL7il1bOsPoyBp7HchTRRpumVMIiBAD7kDD53jIck0,15411
4
- gym_examples-2.0.55.dist-info/METADATA,sha256=BAqN3wGi55dKSDpBVPjBbSXbCMccK7M8jIO2Ry1AnXY,411
5
- gym_examples-2.0.55.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.55.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.55.dist-info/RECORD,,