gym-examples 2.0.50__py3-none-any.whl → 2.0.52__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gym_examples/__init__.py +1 -1
- gym_examples/envs/wsn_env.py +10 -9
- {gym_examples-2.0.50.dist-info → gym_examples-2.0.52.dist-info}/METADATA +1 -1
- gym_examples-2.0.52.dist-info/RECORD +7 -0
- gym_examples-2.0.50.dist-info/RECORD +0 -7
- {gym_examples-2.0.50.dist-info → gym_examples-2.0.52.dist-info}/WHEEL +0 -0
- {gym_examples-2.0.50.dist-info → gym_examples-2.0.52.dist-info}/top_level.txt +0 -0
gym_examples/__init__.py
CHANGED
gym_examples/envs/wsn_env.py
CHANGED
@@ -115,10 +115,10 @@ class WSNRoutingEnv(gym.Env):
|
|
115
115
|
# Calculate final reward
|
116
116
|
# rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
|
117
117
|
# final_reward = net(rewards_individual)
|
118
|
-
final_reward = np.
|
118
|
+
final_reward = np.sum(rewards[i])
|
119
119
|
rewards[i] = final_reward
|
120
120
|
|
121
|
-
rewards = [r * self.network_reward_consumption_energy()
|
121
|
+
rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
|
122
122
|
|
123
123
|
for i in range(self.n_sensors):
|
124
124
|
if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
|
@@ -185,7 +185,7 @@ class WSNRoutingEnv(gym.Env):
|
|
185
185
|
# Normalize the angle
|
186
186
|
normalized_angle = abs(angle) / np.pi
|
187
187
|
|
188
|
-
return 1 - normalized_angle
|
188
|
+
return np.clip(1 - normalized_angle, 0, 1)
|
189
189
|
|
190
190
|
def compute_reward_distance(self, i, action):
|
191
191
|
'''
|
@@ -198,7 +198,7 @@ class WSNRoutingEnv(gym.Env):
|
|
198
198
|
# Normalize the distance to the next hop
|
199
199
|
normalized_distance_to_next_hop = distance / self.coverage_radius
|
200
200
|
|
201
|
-
return 1 - normalized_distance_to_next_hop
|
201
|
+
return np.clip(1 - normalized_distance_to_next_hop, 0, 1)
|
202
202
|
|
203
203
|
def compute_reward_consumption_energy(self, i, action):
|
204
204
|
'''
|
@@ -219,7 +219,7 @@ class WSNRoutingEnv(gym.Env):
|
|
219
219
|
max_total_energy = max_transmission_energy + max_reception_energy
|
220
220
|
normalized_total_energy = total_energy / max_total_energy
|
221
221
|
|
222
|
-
return 1 - normalized_total_energy
|
222
|
+
return np.clip(1 - normalized_total_energy, 0, 1)
|
223
223
|
|
224
224
|
def compute_reward_dispersion_remaining_energy(self):
|
225
225
|
'''
|
@@ -242,7 +242,7 @@ class WSNRoutingEnv(gym.Env):
|
|
242
242
|
else:
|
243
243
|
normalized_number_of_packets = self.number_of_packets[action] / max_number_of_packets
|
244
244
|
|
245
|
-
return 1 - normalized_number_of_packets
|
245
|
+
return np.clip(1 - normalized_number_of_packets, 0, 1)
|
246
246
|
|
247
247
|
def compute_individual_rewards(self, i, action):
|
248
248
|
'''
|
@@ -251,10 +251,11 @@ class WSNRoutingEnv(gym.Env):
|
|
251
251
|
reward_angle = self.compute_reward_angle(i, action)
|
252
252
|
reward_distance = self.compute_reward_distance(i, action)
|
253
253
|
reward_consumption_energy = self.compute_reward_consumption_energy(i, action)
|
254
|
-
reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
|
254
|
+
# reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy()
|
255
255
|
reward_number_of_packets = self.compute_reward_number_of_packets(action)
|
256
256
|
|
257
|
-
return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
|
257
|
+
# return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
|
258
|
+
return [reward_angle, reward_distance, reward_consumption_energy, reward_number_of_packets]
|
258
259
|
|
259
260
|
def network_reward_dispersion_remaining_energy(self):
|
260
261
|
'''
|
@@ -277,7 +278,7 @@ class WSNRoutingEnv(gym.Env):
|
|
277
278
|
max_reception_energy = self.reception_energy(self.n_sensors * initial_number_of_packets)
|
278
279
|
normalized_total_energy = total_energy / (max_transmission_energy + max_reception_energy)
|
279
280
|
|
280
|
-
return 1 - normalized_total_energy
|
281
|
+
return np.clip(1 - normalized_total_energy, 0, 1)
|
281
282
|
|
282
283
|
def integrate_mobility(self):
|
283
284
|
'''
|
@@ -0,0 +1,7 @@
|
|
1
|
+
gym_examples/__init__.py,sha256=6aaeH8rkfL_LI7cvWeIw12KjsNXo-mMyDfYWUedc1AU,193
|
2
|
+
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
+
gym_examples/envs/wsn_env.py,sha256=0B3NR4ovrgafYv1oIm-EG_tnReB965W5QICY7rQnKVk,14999
|
4
|
+
gym_examples-2.0.52.dist-info/METADATA,sha256=kZ8UE_UTc9Qyoo82ZMIyZWBMCRLtBvRcup6mKDBSbcE,411
|
5
|
+
gym_examples-2.0.52.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
+
gym_examples-2.0.52.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
+
gym_examples-2.0.52.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
gym_examples/__init__.py,sha256=vQ37pkZ5W5E2Poo_7k2_PSIW-D1ekmFKIbmjgp4quqg,193
|
2
|
-
gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
|
3
|
-
gym_examples/envs/wsn_env.py,sha256=I9UO0beru5MhLxxb8JRMCCLqm6ZvKZ24blYD0cFuUtg,14785
|
4
|
-
gym_examples-2.0.50.dist-info/METADATA,sha256=Nd4YwzGfy1O3zWqQ-AmE3WmpUIMEd2vL122tLuVkUyI,411
|
5
|
-
gym_examples-2.0.50.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
6
|
-
gym_examples-2.0.50.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
|
7
|
-
gym_examples-2.0.50.dist-info/RECORD,,
|
File without changes
|
File without changes
|