gym-examples 2.0.31__py3-none-any.whl → 2.0.32__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.31"
9
+ __version__ = "2.0.32"
@@ -115,9 +115,10 @@ class WSNRoutingEnv(gym.Env):
115
115
  # Calculate final reward
116
116
  # rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
117
117
  # final_reward = net(rewards_individual)
118
- final_reward = np.sum(rewards[i])
118
+ final_reward = np.sum(rewards[i])
119
119
  rewards[i] = final_reward
120
-
120
+ rewards *= self.network_reward_consumption_energy() * self.network_reward_dispersion_remaining_energy()
121
+
121
122
  for i in range(self.n_sensors):
122
123
  if (self.remaining_energy[i] <= 0) or (self.number_of_packets[i] <= 0):
123
124
  dones[i] = True
@@ -254,6 +255,29 @@ class WSNRoutingEnv(gym.Env):
254
255
 
255
256
  return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
256
257
 
258
+ def network_reward_dispersion_remaining_energy(self):
259
+ '''
260
+ Compute the reward based on the standard deviation of the remaining energy at the network level
261
+ '''
262
+ dispersion_remaining_energy = np.std(self.remaining_energy)
263
+ # Normalize the standard deviation of the remaining energy
264
+ max_dispersion_remaining_energy = initial_energy / 2 # maximum standard deviation of the remaining energy if n_sensors is even
265
+ normalized_dispersion_remaining_energy = dispersion_remaining_energy / max_dispersion_remaining_energy
266
+
267
+ return np.clip(1 - normalized_dispersion_remaining_energy, 0, 1)
268
+
269
+ def network_reward_consumption_energy(self):
270
+ '''
271
+ Compute the reward based on the total energy consumption (transmission, reception) at the network level
272
+ '''
273
+ total_energy = np.sum(self.consumption_energy)
274
+ # Normalize the total energy consumption
275
+ max_transmission_energy = self.transmission_energy(self.n_sensors * initial_number_of_packets, self.coverage_radius)
276
+ max_reception_energy = self.reception_energy(self.n_sensors * initial_number_of_packets)
277
+ normalized_total_energy = total_energy / (max_transmission_energy + max_reception_energy)
278
+
279
+ return 1 - normalized_total_energy
280
+
257
281
  def integrate_mobility(self):
258
282
  '''
259
283
  Integrate the mobility of the sensors after each step
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.31
3
+ Version: 2.0.32
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=EYrWJ3V1oe3cV6qzc6PCLGBpaidU210LmmACYpG1bt4,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=gZkGOQuMxtNO40vk-D1k90ed_iIdJdUQ3LFbpWkjxmU,14710
4
+ gym_examples-2.0.32.dist-info/METADATA,sha256=IokXfCpcv9CpKNwR5aId5HN4I1UVNd5Of6E2nRy1adc,411
5
+ gym_examples-2.0.32.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.32.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.32.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=-Zi6pjtuGP4mWLhMJ5XoRMBap3wEBnvbILvg_aozuTw,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=M2bo_-wLWkXTJajQc7OgkT7vsXlCyGBTkfXA3ipFSc0,13265
4
- gym_examples-2.0.31.dist-info/METADATA,sha256=XZzdSuDCJ2CXoAF6osyaCT0nKN9xRQoL5GksbJvxnq4,411
5
- gym_examples-2.0.31.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.31.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.31.dist-info/RECORD,,