gym-examples 2.0.24__py3-none-any.whl → 2.0.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.24"
9
+ __version__ = "2.0.25"
@@ -118,7 +118,8 @@ class WSNRoutingEnv(gym.Env):
118
118
  # Calculate final reward
119
119
  # rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
120
120
  # final_reward = net(rewards_individual)
121
- final_reward = sum(rewards[i])
121
+ # final_reward = sum(rewards[i])
122
+ final_reward = np.mean(rewards[i])
122
123
  rewards[i] = final_reward
123
124
 
124
125
  for i in range(self.n_sensors):
@@ -249,10 +250,12 @@ class WSNRoutingEnv(gym.Env):
249
250
 
250
251
  def compute_reward_number_of_packets(self, i, action, neighbors_i):
251
252
  '''
252
- Compute the reward based on the number of packets to transmit
253
+ Compute the reward based on the number of packets of each sensor in the neighborhood
253
254
  '''
254
- if len(neighbors_i) == 1:
255
+ if len(neighbors_i) == 1 or action == self.n_sensors:
255
256
  return 1
257
+ elif self.n_sensors in neighbors_i.keys():
258
+ return 0
256
259
  else:
257
260
  total_number_of_packets = np.sum([self.number_of_packets[x] for x in neighbors_i])
258
261
  normalized_number_of_packets = self.number_of_packets[action] / total_number_of_packets
@@ -269,8 +272,9 @@ class WSNRoutingEnv(gym.Env):
269
272
  reward_dispersion_remaining_energy = self.compute_reward_dispersion_remaining_energy(i, action, neighbors_i, remaining_energy_before)
270
273
  reward_number_of_packets = self.compute_reward_number_of_packets(i, action, neighbors_i)
271
274
 
272
- return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
273
-
275
+ # return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy, reward_number_of_packets]
276
+ return [reward_angle, reward_distance, reward_consumption_energy, reward_dispersion_remaining_energy]
277
+
274
278
  def integrate_mobility(self):
275
279
  '''
276
280
  Integrate the mobility of the sensors after each step
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.24
3
+ Version: 2.0.25
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=M32_6YSJZauKwn2-uBxRdUz47YkLA2k9Kba-ATqlmjY,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=ZyQ0DZ0SUVV8yj2TE0_8pbwPVfuzKzidcsymlQvLpU8,16041
4
+ gym_examples-2.0.25.dist-info/METADATA,sha256=bJhOsljL-MgvqCHj9v74RQ0_6qQCr7hTCsxLOjiebFM,411
5
+ gym_examples-2.0.25.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.25.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.25.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=cfrZU0rlt-uBEIIfos7Z0TRaI2NgwTZmM5YVG4ojpTE,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=HXDG3mR-GXlkwlPAf8xOvzbAk-Gj_sf5nFpsG-z7SEs,15757
4
- gym_examples-2.0.24.dist-info/METADATA,sha256=p7X6WjQuMnFSqIr0oO4U_Iexvi3pRG_15678VqCXPl8,411
5
- gym_examples-2.0.24.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.24.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.24.dist-info/RECORD,,