gym-examples 2.0.105__py3-none-any.whl → 2.0.107__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "2.0.105"
9
+ __version__ = "2.0.107"
@@ -133,11 +133,12 @@ class WSNRoutingEnv(gym.Env):
133
133
  # rewards_individual = torch.tensor(rewards[i], dtype=torch.double)
134
134
  # final_reward = net(rewards_individual)
135
135
  # self.rewards_individual[i] = rewards[i]
136
- final_reward = np.sum(rewards[i])
136
+ # final_reward = np.sum(rewards[i])
137
+ weights = [1/4, 1/4, 1/4, 1/4]
138
+ final_reward = np.sum(reward * weight for reward, weight in zip(rewards[i], weights))
137
139
  rewards[i] = final_reward
138
140
  # rewards = [0.5 * r + 0.5 * (1/self.n_sensors) * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
139
141
  # rewards = [0.5 * r + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy()) for r in rewards]
140
- rewards = 0.5 * np.sum(rewards) + 0.5 * (self.network_reward_consumption_energy() + self.network_reward_dispersion_remaining_energy())
141
142
  # Only proceed if network consumption energy is not zero to avoid unnecessary list comprehension
142
143
  # self.rewards_individual = [r for r in self.rewards_individual if ((r != 0) and (r[len(r) -1] < 1))]
143
144
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 2.0.105
3
+ Version: 2.0.107
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=FmmGzAo_vIvsvjB3eL2A1PQtojpx6t_UzMO60kng1AY,194
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=k-QjF9BCKAn1IeAGwJJqUX-XI2OBphD5_SlmO8BQgwI,17332
4
+ gym_examples-2.0.107.dist-info/METADATA,sha256=p0bOk2QtRNnHARcb5vzUhcmjK2mwFAWkz9TyXp9RV1k,412
5
+ gym_examples-2.0.107.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-2.0.107.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-2.0.107.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=d42Xiyw7DYwtga2HWDZtaY9dBxqVxsiLZ62L2uCbSPo,194
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=nBvLmEcR_f822dt6E85kmQRw5VrndUZe6iYFcLn4tdU,17331
4
- gym_examples-2.0.105.dist-info/METADATA,sha256=u8x5g10kkCBjD5y0_wtZ3wmhcPjqR0jpUFrmmaRRqgw,412
5
- gym_examples-2.0.105.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-2.0.105.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-2.0.105.dist-info/RECORD,,