gwaslab 3.5.4__py3-none-any.whl → 3.5.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gwaslab might be problematic. Click here for more details.

@@ -38,9 +38,10 @@ from gwaslab.io_to_pickle import load_data_from_pickle
38
38
  from gwaslab.g_Sumstats import Sumstats
39
39
  from gwaslab.viz_aux_save_figure import save_figure
40
40
  from gwaslab.viz_plot_mqqplot import mqqplot
41
+ from gwaslab.viz_plot_credible_sets import _plot_cs
41
42
  import matplotlib.patches as patches
42
43
 
43
- def plot_stacked_mqq(objects,
44
+ def plot_stacked_mqq( objects,
44
45
  vcfs=None,
45
46
  mode="r",
46
47
  mqqratio=3,
@@ -62,10 +63,12 @@ def plot_stacked_mqq(objects,
62
63
  region_ld_legends = None,
63
64
  fontsize=9,
64
65
  font_family="Arial",
66
+ common_ylabel=True,
65
67
  build="99",
66
68
  save=None,
67
69
  save_args=None,
68
70
  verbose=True,
71
+ pm=None,
69
72
  log=Log(),
70
73
  **mqq_args
71
74
  ):
@@ -74,10 +77,28 @@ def plot_stacked_mqq(objects,
74
77
  # load sumstats
75
78
 
76
79
  ##########################################################################################################################################
80
+ if pm is None:
81
+ pm=[]
82
+
77
83
  sumstats_list = []
78
84
  for each_object in objects:
79
- sumstats_list.append(each_object.data)
85
+ if type(each_object) is Sumstats:
86
+ if "P" in each_object.data.columns or "MLOG10P" in each_object.data.columns:
87
+ sumstats_list.append(each_object.data)
88
+ pm.append("m")
89
+ else:
90
+ if "PIP" in each_object.columns:
91
+ sumstats_list.append(each_object)
92
+ pm.append("pip")
93
+ common_ylabel=False
94
+
95
+ if common_ylabel==True:
96
+ rr_ylabel=False
97
+ else:
98
+ rr_ylabel=True
80
99
 
100
+ log.write(" -Panel mode:{}...".format(pm),verbose=verbose)
101
+
81
102
  if fig_args is None:
82
103
  fig_args = {"dpi":200}
83
104
  if save_args is None:
@@ -157,7 +178,6 @@ def plot_stacked_mqq(objects,
157
178
  ##########################################################################################################################################
158
179
  mqq_args_for_each_plot = _sort_args(mqq_args, n_plot)
159
180
 
160
-
161
181
  ##########################################################################################################################################
162
182
  # get x axis dict
163
183
  if mode=="m" or mode=="r":
@@ -200,7 +220,7 @@ def plot_stacked_mqq(objects,
200
220
  region_lead_grid=False,
201
221
  region_ld_legend=region_ld_legend,
202
222
  gtf_path="default",
203
- rr_ylabel=False,
223
+ rr_ylabel=rr_ylabel,
204
224
  figax=figax,
205
225
  _get_region_lead=True,
206
226
  _if_quick_qc=False,
@@ -213,33 +233,42 @@ def plot_stacked_mqq(objects,
213
233
  lead_variants_is[index] = lead_snp_is
214
234
  lead_variants_is_color[index] = lead_snp_is_color
215
235
  else:
216
- # plot only the scatter plot
217
- fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
218
- chrom="CHR",
219
- pos="POS",
220
- p="P",
221
- region=region,
222
- mlog10p="MLOG10P",
223
- snpid="SNPID",
224
- vcf_path=vcfs[index],
225
- region_lead_grid=False,
226
- fontsize=fontsize,
227
- font_family=font_family,
228
- mode=mode,
229
- rr_ylabel=False,
230
- region_ld_legend=region_ld_legend,
231
- gtf_path=None,
232
- figax=figax,
233
- _get_region_lead=True,
234
- _if_quick_qc=False,
235
- _posdiccul=_posdiccul,
236
- build=build,
237
- verbose=verbose,
238
- log=log,
239
- **mqq_args_for_each_plot[index]
240
- )
241
- lead_variants_is[index] = lead_snp_is
242
- lead_variants_is_color[index] = lead_snp_is_color
236
+ if pm[index]=="m":
237
+ # plot only the scatter plot
238
+ fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
239
+ chrom="CHR",
240
+ pos="POS",
241
+ p="P",
242
+ region=region,
243
+ mlog10p="MLOG10P",
244
+ snpid="SNPID",
245
+ vcf_path=vcfs[index],
246
+ region_lead_grid=False,
247
+ fontsize=fontsize,
248
+ font_family=font_family,
249
+ mode=mode,
250
+ rr_ylabel=rr_ylabel,
251
+ region_ld_legend=region_ld_legend,
252
+ gtf_path=None,
253
+ figax=figax,
254
+ _get_region_lead=True,
255
+ _if_quick_qc=False,
256
+ _posdiccul=_posdiccul,
257
+ build=build,
258
+ verbose=verbose,
259
+ log=log,
260
+ **mqq_args_for_each_plot[index]
261
+ )
262
+ lead_variants_is[index] = lead_snp_is
263
+ lead_variants_is_color[index] = lead_snp_is_color
264
+ elif pm[index]=="pip":
265
+ fig,log =_plot_cs(sumstats,
266
+ region=region,
267
+ _posdiccul=_posdiccul,
268
+ figax=figax,
269
+ log=log,
270
+ verbose=verbose,
271
+ **mqq_args_for_each_plot[index])
243
272
  if len(region_chromatin_files)>0 and mode=="r":
244
273
  xlim_i = axes[-1].get_xlim()
245
274
  fig = _plot_chromatin_state( region_chromatin_files = region_chromatin_files,
@@ -295,9 +324,10 @@ def plot_stacked_mqq(objects,
295
324
  _draw_grid_line_for_lead_variants(mode, lead_variants_is,lead_variants_is_color, n_plot, axes, region_lead_grid_line,region_chromatin_files,region_lead_grids)
296
325
 
297
326
  ##########################################################################################################################################
298
- _drop_old_y_labels(axes, n_plot)
299
-
300
- _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family)
327
+ if common_ylabel==True:
328
+ _drop_old_y_labels(axes, n_plot)
329
+
330
+ _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family)
301
331
 
302
332
  ##########################################################################################################################################
303
333
  save_figure(fig = fig, save = save, keyword= "stacked_" + mode, save_args=save_args, log = log, verbose=verbose)
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: gwaslab
3
- Version: 3.5.4
3
+ Version: 3.5.6
4
4
  Summary: A collection of handy tools for GWAS SumStats
5
5
  Author-email: Yunye <yunye@gwaslab.com>
6
6
  Project-URL: Homepage, https://cloufield.github.io/gwaslab/
@@ -14,7 +14,7 @@ License-File: LICENSE
14
14
  License-File: LICENSE_before_v3.4.39
15
15
  Requires-Dist: pandas!=1.5,>=1.3
16
16
  Requires-Dist: numpy<2,>=1.21.2
17
- Requires-Dist: matplotlib!=3.7.2,<3.9,>=3.5
17
+ Requires-Dist: matplotlib<3.9,>=3.8
18
18
  Requires-Dist: seaborn>=0.12
19
19
  Requires-Dist: scipy>=1.12
20
20
  Requires-Dist: pySAM==0.22.1
@@ -51,7 +51,7 @@ Warning: Known issues of GWASLab are summarized in [https://cloufield.github.io/
51
51
  ### install via pip
52
52
 
53
53
  ```
54
- pip install gwaslab==3.5.0
54
+ pip install gwaslab==3.5.4
55
55
  ```
56
56
 
57
57
  ```python
@@ -1,4 +1,4 @@
1
- gwaslab/__init__.py,sha256=pP_OQwkaXMJokVVU_o6AXnJEBs2HtaMtpcHIls3ezO8,2486
1
+ gwaslab/__init__.py,sha256=2pIyLhHrPeyBYlcs3QsWElmUWPGIxoCf68awTk05YQk,2585
2
2
  gwaslab/bd_common_data.py,sha256=2voBqMrIsII1TN5T6uvyDax90fWcJK1Stmo1ZHNGGsE,13898
3
3
  gwaslab/bd_config.py,sha256=TP-r-DPhJD3XnRYZbw9bQHXaDIkiRgK8bG9HCt-UaLc,580
4
4
  gwaslab/bd_download.py,sha256=cDDk2C5IvjeAzvPvVYGTkI4Ss33DUtEDjGo8eAbQRvY,15663
@@ -6,21 +6,24 @@ gwaslab/bd_get_hapmap3.py,sha256=FQpwbhWUPFT152QtiLevEkkN4YcVDIeKzoK0Uz1NlRo,410
6
6
  gwaslab/cache_manager.py,sha256=HOTnSkCOyGEPLRl90WT8D_6pAdI8d8AzenMIDGuCeWc,28113
7
7
  gwaslab/g_Log.py,sha256=C3Zv-_6c3C9ms8bgQ-ytplz22sjk7euqXYkWr9zNeAs,1573
8
8
  gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- gwaslab/g_Sumstats.py,sha256=eqEpHEH5fnBMsOIufVzwaRp0_vCsuHvGEUe5OzNL41s,36969
10
- gwaslab/g_SumstatsPair.py,sha256=20snPb4SlI6ftMGVjgxAuyxsxYRQF-GzzlBSnoB-3Lo,8851
9
+ gwaslab/g_Sumstats.py,sha256=QwXIqnjEd5v1jFRBFmeVlWJr3fO6Hx5hudLOgEf5fmc,39321
10
+ gwaslab/g_SumstatsPair.py,sha256=71fPfwhr9pdH9pdyX17bSEu8ah_WVpTVU0nc_4uln4Y,8766
11
+ gwaslab/g_SumstatsSet.py,sha256=AiTISWPfmu8NTGa8j9Yuts8DNw1pEUENYyPoS0HXp5I,29866
11
12
  gwaslab/g_SumstatsT.py,sha256=u_DighLMnMxwTLnqm-B58pA0G6WXRj6pudPyKMVKjSU,2133
12
13
  gwaslab/g_Sumstats_summary.py,sha256=FECvvFXJVKaCX5dggBvvk9YvJ6AbdbcLfjltysX7wEE,6380
13
- gwaslab/g_meta.py,sha256=htWlgURWclm9R6UqFcX1a93WN27xny7lGUeyJZOtszQ,2583
14
+ gwaslab/g_headers.py,sha256=Q37MZgc2G1bMzzJX94Kq6GoRYJyfUxQX50CvyIerXww,6524
15
+ gwaslab/g_meta.py,sha256=Orj8WhFvbylDmaAp9Px_GRUoyEBVML8MLa9829sNM0o,2588
14
16
  gwaslab/g_vchange_status.py,sha256=w3zsYYOcCaI3PTeboonvkQjudzUAfVIgATzRdiPViZs,1939
15
- gwaslab/g_version.py,sha256=Hb-918M6CfBBxPHu3teUDFAW15IWJnRijTB8vNR4F8c,1885
17
+ gwaslab/g_version.py,sha256=XU8rILb0iLB_g-Daw4cuksdSLl7P_mQO9M06voc1t1k,1889
16
18
  gwaslab/hm_casting.py,sha256=FqP4EQl83Q2OKLw004OgLIvUH795TVCGwziLk5jsHqY,11368
17
- gwaslab/hm_harmonize_sumstats.py,sha256=_sZ8soikAxDokw-dcr_CLguBB8OmTmPPS04MfmsJc_Q,79509
19
+ gwaslab/hm_harmonize_sumstats.py,sha256=ymM33bwOOkLteiLXUuSSzURudgCrkVMTR7wUwXf1jQs,84381
18
20
  gwaslab/hm_rsid_to_chrpos.py,sha256=ODWREO0jPN0RAfNzL5fRzSRANfhiksOvUVPuEsFZQqA,6552
19
- gwaslab/io_preformat_input.py,sha256=J8Ny4OPMaLVdo2nP8lTM-c5A8LSdqphSrp9G4i9JjDQ,24097
21
+ gwaslab/io_preformat_input.py,sha256=cfoywijnk1z1QeTMOXL_lqcheI3GA_Ff4uOUNxAqCq4,25331
20
22
  gwaslab/io_process_args.py,sha256=0ljJOVGsD7qPuBLvdfvR7Vrh7zXPlvfPg-rhOw8xRpQ,1366
21
23
  gwaslab/io_read_ldsc.py,sha256=wsYXpH50IchBKd2dhYloSqc4YgnDkiwMsAweaCoN5Eo,12471
24
+ gwaslab/io_read_pipcs.py,sha256=17ycVJT1qwx3MBzcRdTlAf_7RiFKGilgoc7eq7kFtog,994
22
25
  gwaslab/io_read_tabular.py,sha256=EG-C6KhCutt4J4LlOMgXnqzJvU-EZXzVhMvaDFnHrMM,2380
23
- gwaslab/io_to_formats.py,sha256=hiIaR-JKOVehv7Y14_SklvzPi_E4U-wUybjKWfPyIus,32587
26
+ gwaslab/io_to_formats.py,sha256=uAmZ4xzVoJqXGXxwTZlbppli4fPc2EshnuTJm2DC4v8,32799
24
27
  gwaslab/io_to_pickle.py,sha256=HhePU0VcaGni0HTNU0BqoRaOnrr0NOxotgY6ISdx3Ck,1833
25
28
  gwaslab/ldsc_irwls.py,sha256=83JbAMAhD0KOfpv4IJa6LgUDfQjp4XSJveTjnhCBJYQ,6142
26
29
  gwaslab/ldsc_jackknife.py,sha256=XrWHoKS_Xn9StG1I83S2vUMTertsb-GH-_gOFYUhLeU,17715
@@ -28,52 +31,54 @@ gwaslab/ldsc_ldscore.py,sha256=ZOxMvV3PhZzLsTmkKQqjabk_9PdrCTtPhbrdrpGmRAk,14580
28
31
  gwaslab/ldsc_parse.py,sha256=MBnfgcWlV4oHp9MoDRh1mpilaHhAR15Af77hMFn4-5k,10564
29
32
  gwaslab/ldsc_regressions.py,sha256=yzbGjgNV7u-SWXNPsh9S8y9mK97Bim_Nmad9G9V18ZU,30078
30
33
  gwaslab/ldsc_sumstats.py,sha256=O0olsDxKlh1MJ1gAuEN1t40rxhajOEwOQ20ak7xoDrI,26245
31
- gwaslab/qc_check_datatype.py,sha256=kW68uk4dTLOU2b1dHoVat6n0loundDysAjIqxsXW28Q,3379
32
- gwaslab/qc_fix_sumstats.py,sha256=u0YfC70zop2roUfq6mLMNL49m8AHPF2G-j8dKqW25yY,98261
34
+ gwaslab/qc_check_datatype.py,sha256=mAM0LCMf9LseX44oeELG0croPlxfp7U8A8TH-Y5F6kQ,4453
35
+ gwaslab/qc_fix_sumstats.py,sha256=4lXedhYGsd6BAoApBr7kEly_GbVdcXgBQXMB5X2iN70,98262
33
36
  gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
37
  gwaslab/util_abf_finemapping.py,sha256=LRcopjtkT-iXtKPAJIzR4qjPdhD7nrS_BGit4EW89FM,3054
35
38
  gwaslab/util_ex_calculate_ldmatrix.py,sha256=Z_spxbq6SHDS0v84I59YTTF40iyLQIOZbt0dmEcNJjw,15417
36
39
  gwaslab/util_ex_calculate_prs.py,sha256=9uJ588Sdj4V0vw3OZ9NeLECwOvW67f0IdLandVPS5RY,9442
37
40
  gwaslab/util_ex_gwascatalog.py,sha256=--Gde9HrsikfYTeFqSaYz0gUODr9wmv_gV6GZGNlElg,7688
38
- gwaslab/util_ex_ldproxyfinder.py,sha256=wWNW9wITWozj23gT41LR00WxU-rrHpGKbxs2H_3jEyM,9431
39
- gwaslab/util_ex_ldsc.py,sha256=dd3QUNX7eOJY_z4mkKIE9Ey_SQGE4ox0efhq28ah_LE,18592
41
+ gwaslab/util_ex_ldproxyfinder.py,sha256=HadmnjEv5EvZCHR5SFSAbqxZWJryEErJftCS0WhZUbs,16898
42
+ gwaslab/util_ex_ldsc.py,sha256=dMfL7hej0JzTOafPk6VYl5HUxB3eSp28wUKVWliIhlE,18937
40
43
  gwaslab/util_ex_plink_filter.py,sha256=pK1Yxtv9-J4rMOdVAG7VU9PktvI6-y4FxBiVEH0QuRs,1673
41
44
  gwaslab/util_ex_process_h5.py,sha256=ynFvo3zxgvOxWYL565v2IQf8P6iEuq7UlKQ_ULxrd6Y,2831
42
45
  gwaslab/util_ex_process_ref.py,sha256=GQ0ZEWLxGpHLdBs3tqnAqKn3Pqx1A1YvNbYrBLBvXeg,17126
43
- gwaslab/util_ex_run_2samplemr.py,sha256=5c0DGF694T9j0Y58L2I7pr1_Z1hfpaatIgix7P5oPA8,9127
44
- gwaslab/util_ex_run_clumping.py,sha256=bs9CJENMhwVXolCNygaYtso5ikPrdPMiV13tGA0ttxg,7915
46
+ gwaslab/util_ex_run_2samplemr.py,sha256=wBr5s0XKlzqLe5ZyskvpeWUv-0fgnynBk0DCfnax-sc,10429
47
+ gwaslab/util_ex_run_clumping.py,sha256=yvUhKi83KhXfE5yPy2i47B58BMACZ_r5gt3-uN8Znbo,7908
45
48
  gwaslab/util_ex_run_coloc.py,sha256=u57h8wPbTCOf6aY5u5DpzK1gv7inuDT8a15UGo-1ras,6288
46
49
  gwaslab/util_ex_run_susie.py,sha256=TXqiwBVq1io7XSlLF2_gNsYgxDLiKNnYE9pIjRWJ1Hc,5315
47
50
  gwaslab/util_in_calculate_gc.py,sha256=MWOXVzJv7SZx4i2_ncRiqsiEOADc7EfghaUzgGy4jaE,2219
48
51
  gwaslab/util_in_calculate_power.py,sha256=JfHJFg3tNF0f4NHgWlzVW2mSxCiP07mAHIyEfVfxTak,10360
49
52
  gwaslab/util_in_convert_h2.py,sha256=a8Cbudt3xn9WP2bPc-7ysuowB-LYub8j8GeDXl7Lk7Q,6483
50
53
  gwaslab/util_in_correct_winnerscurse.py,sha256=Gp--yAQ8MMzdkWIvXP9C1BHVjZc-YzqHfYWhAj19w9w,2110
51
- gwaslab/util_in_fill_data.py,sha256=iVq5WLWwFI03v9HyvBanu5si3j2p-oyPFTl8jsX69xM,14693
52
- gwaslab/util_in_filter_value.py,sha256=dY4X66N9A4MHCRHjPqLYFufMM91ggLRwUBf_nJYh8Lg,23605
54
+ gwaslab/util_in_fill_data.py,sha256=ZXdxRD7oUpQ-uG_5EVsS994rA1n3PqLbZ2TxOKz379w,15762
55
+ gwaslab/util_in_filter_value.py,sha256=KnHazy2Z3wSLULFRfp-Sm7TQ2gGLqU6kxnkhETgVPPg,26501
53
56
  gwaslab/util_in_get_density.py,sha256=kpKXH69acMkeYVG5vs-VbJC3COhmuLBfYco-wuOxgjc,3934
54
57
  gwaslab/util_in_get_sig.py,sha256=53NOh7KueLY3vJPTNhhb37KPAIgLEfcP3k2zIV61lc4,39845
58
+ gwaslab/util_in_merge.py,sha256=KB5VKRTUUZ1XGYUxgCP_l3cWYanjthMdwiZ_DincCZQ,2020
55
59
  gwaslab/util_in_meta.py,sha256=5K9lIZcIgUy0AERqHy1GvMN2X6dp45JUUgopuDLgt4o,11284
56
60
  gwaslab/util_in_snphwe.py,sha256=-KpIDx6vn_nah6H55IkV2OyjXQVXV13XyBL069WE1wM,1751
57
- gwaslab/vis_plot_credible sets.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
61
  gwaslab/viz_aux_annotate_plot.py,sha256=3PyBioC-3ZBzqKT2JRv6vp-hZUXSqTTePIT5cblEvnQ,25334
59
62
  gwaslab/viz_aux_chromatin.py,sha256=aWZaXOSvGyZY7wQcoFDaqHRYCSHZbi_K4Q70HruN9ts,4125
60
63
  gwaslab/viz_aux_property.py,sha256=UIaivghnLXYpTwkKnXRK0F28Jbn9L6OaICk3K73WZaU,33
61
64
  gwaslab/viz_aux_quickfix.py,sha256=cGX5i3WBmvKIiqck8V00caDg-pvKOO709Ux3DBXsUrM,18693
62
65
  gwaslab/viz_aux_reposition_text.py,sha256=iRIP-Rkltlei068HekJcVubiqPrunBqvAoSQ1eHk04M,4304
63
- gwaslab/viz_aux_save_figure.py,sha256=x_b4DlTSmHJddfQgoYoReCi4QQbQEtcwCWTKfGetfTA,2768
66
+ gwaslab/viz_aux_save_figure.py,sha256=HwIRDMYpeXfkBgb7mqzLN7OVPMz163U-ZVOlQJABzeg,2811
64
67
  gwaslab/viz_plot_compare_af.py,sha256=qtXW45-Sq_ugK8ZfqBYMpmf58SKi3lB3YyHnzn_akcE,5344
65
68
  gwaslab/viz_plot_compare_effect.py,sha256=kq-rVWygHEeTBMOtd_jk8nK85ClZHU-ADSf4nI2gTKo,66604
69
+ gwaslab/viz_plot_credible_sets.py,sha256=KxB7_bkDrLMgs6sk8HAnZWkllIRH-lEDCz5n5_Jnw68,3550
70
+ gwaslab/viz_plot_effect.py,sha256=7p3YnGcgIG0ajwQSNCiHlmX9BvEeClwvQ-DhPe5LzSI,9750
66
71
  gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
67
72
  gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
68
- gwaslab/viz_plot_miamiplot2.py,sha256=nA8xAI0ou3rBobm3DygOQSpunhZWwXVilKVd0v4Jfac,16213
69
- gwaslab/viz_plot_mqqplot.py,sha256=Pea0uNWe4ZW3S8z8BGQ_dIEWmnKWoxAgEMVxGsMJYxk,68560
73
+ gwaslab/viz_plot_miamiplot2.py,sha256=tr3vRq6NLmoVoOSYbUkvXMHRONLLrvqjkRYN1iSX5-I,16214
74
+ gwaslab/viz_plot_mqqplot.py,sha256=u61iABMihbMCDNMVSuvTscjeteZKlfIlyEK4xls2dE0,69557
70
75
  gwaslab/viz_plot_phe_heatmap.py,sha256=qoXVeFTIm-n8IinNbDdPFVBSz2yGCGK6QzTstXv6aj4,9532
71
76
  gwaslab/viz_plot_qqplot.py,sha256=psQgVpP29686CEZkzQz0iRbApzqy7aE3GGiBcazVvNw,7247
72
- gwaslab/viz_plot_regional2.py,sha256=rvvIU60pOJFiDReQFd_Q2MkthuwvNOUkptV1swP9uJM,39444
77
+ gwaslab/viz_plot_regional2.py,sha256=CRjuHnT4ghoInQ7AzcIQCrtk9jKxY8Kvc5biBXzT8Hg,43426
73
78
  gwaslab/viz_plot_regionalplot.py,sha256=8u-5-yfy-UaXhaxVVz3Y5k2kBAoqzczUw1hyyD450iI,37983
74
79
  gwaslab/viz_plot_rg_heatmap.py,sha256=PidUsgOiEVt6MfBPCF3_yDhOEytZ-I1q-ZD6_0pFrV4,13713
75
80
  gwaslab/viz_plot_scatter_with_reg.py,sha256=PmUZDQl2q4Dme3HLPXEwf_TrMjwJADA-uFXNDBWUEa4,8333
76
- gwaslab/viz_plot_stackedregional.py,sha256=UefPxnd-EJApFdwcafE2k6jZqrfGKEjy51NhieiRaPM,17362
81
+ gwaslab/viz_plot_stackedregional.py,sha256=0U2TVyJHdk1Apk_7AT5bwwUeEpWeNcjbEVAWWoAsFoY,18613
77
82
  gwaslab/viz_plot_trumpetplot.py,sha256=y4sAFjzMaSLuWrdr9_ao-wPYCK5DlP2ykiqulWsoN_k,42680
78
83
  gwaslab/data/formatbook.json,sha256=N2nJs80HH98Rsu9FxaSvIQO9J5yIV97WEtAKjRqYwiY,38207
79
84
  gwaslab/data/reference.json,sha256=IrjwFnXjrpVUp3zYfcYClpibJE9Y-94gtrC1Aw8sXxg,12332
@@ -83,9 +88,9 @@ gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW
83
88
  gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
84
89
  gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
85
90
  gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
86
- gwaslab-3.5.4.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
87
- gwaslab-3.5.4.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
88
- gwaslab-3.5.4.dist-info/METADATA,sha256=VcvdZjTDu1M7_ImdKHMYQXlU26IH12_EB780cwHkP1c,7758
89
- gwaslab-3.5.4.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
90
- gwaslab-3.5.4.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
91
- gwaslab-3.5.4.dist-info/RECORD,,
91
+ gwaslab-3.5.6.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
92
+ gwaslab-3.5.6.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
93
+ gwaslab-3.5.6.dist-info/METADATA,sha256=SQE2GcWFkajxX8jOAZ6uZEfwErn_F2GMf0jqHQVUKrY,7750
94
+ gwaslab-3.5.6.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
95
+ gwaslab-3.5.6.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
96
+ gwaslab-3.5.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (75.8.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
File without changes