gwaslab 3.4.46__py3-none-any.whl → 3.4.48__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gwaslab might be problematic. Click here for more details.

@@ -57,7 +57,11 @@ def plot_stacked_mqq(objects,
57
57
  fig_args=None,
58
58
  region_hspace=0.05,
59
59
  subplot_height=4,
60
+ region_lead_grids = None,
60
61
  region_lead_grid_line=None,
62
+ region_ld_legends = None,
63
+ fontsize=9,
64
+ font_family="Arial",
61
65
  build="99",
62
66
  save=None,
63
67
  save_args=None,
@@ -83,6 +87,13 @@ def plot_stacked_mqq(objects,
83
87
  region_chromatin_height = len(region_chromatin_files) * region_chromatin_height
84
88
  if region_chromatin_labels is None:
85
89
  region_chromatin_labels = []
90
+ if region_ld_legends is None:
91
+ region_ld_legends = [0]
92
+ if title_args is None:
93
+ title_args = {"family":"Arial"}
94
+ else:
95
+ if "family" not in title_args.keys():
96
+ title_args["family"] = "Arial"
86
97
  # create figure and axes ##################################################################################################################
87
98
  if mode=="r":
88
99
  if len(vcfs)==1:
@@ -118,7 +129,9 @@ def plot_stacked_mqq(objects,
118
129
  'width_ratios':[mqqratio,1]},
119
130
  **fig_args)
120
131
  plt.subplots_adjust(hspace=region_hspace)
121
-
132
+
133
+ if region_lead_grids is None:
134
+ region_lead_grids = [i for i in range(len(axes))]
122
135
  ##########################################################################################################################################
123
136
  mqq_args_for_each_plot = _sort_args(mqq_args, n_plot)
124
137
  ##########################################################################################################################################
@@ -131,6 +144,7 @@ def plot_stacked_mqq(objects,
131
144
  ##########################################################################################################################################
132
145
  # a dict to store lead variants of each plot
133
146
  lead_variants_is={}
147
+ lead_variants_is_color ={}
134
148
 
135
149
  ##########################################################################################################################################
136
150
  # plot manhattan plot
@@ -141,10 +155,14 @@ def plot_stacked_mqq(objects,
141
155
  figax = (fig,axes[index],axes[-1])
142
156
  elif mode=="mqq":
143
157
  figax = (fig,axes[index,0],axes[index,1])
158
+ if index in region_ld_legends:
159
+ region_ld_legend = True
160
+ else:
161
+ region_ld_legend = False
144
162
  #################################################################
145
163
  if index==0:
146
164
  # plot last m and gene track
147
- fig,log,lead_i,lead_i2 = mqqplot(sumstats,
165
+ fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
148
166
  chrom="CHR",
149
167
  pos="POS",
150
168
  p="P",
@@ -153,7 +171,10 @@ def plot_stacked_mqq(objects,
153
171
  snpid="SNPID",
154
172
  vcf_path=vcfs[index],
155
173
  mode=mode,
174
+ fontsize=fontsize,
175
+ font_family=font_family,
156
176
  region_lead_grid=False,
177
+ region_ld_legend=region_ld_legend,
157
178
  gtf_path="default",
158
179
  rr_ylabel=False,
159
180
  figax=figax,
@@ -165,10 +186,11 @@ def plot_stacked_mqq(objects,
165
186
  log=log,
166
187
  **mqq_args_for_each_plot[index]
167
188
  )
168
- lead_variants_is[index] = (lead_i,lead_i2)
189
+ lead_variants_is[index] = lead_snp_is
190
+ lead_variants_is_color[index] = lead_snp_is_color
169
191
  else:
170
192
  # plot only the scatter plot
171
- fig,log,lead_i,lead_i2 = mqqplot(sumstats,
193
+ fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
172
194
  chrom="CHR",
173
195
  pos="POS",
174
196
  p="P",
@@ -177,9 +199,11 @@ def plot_stacked_mqq(objects,
177
199
  snpid="SNPID",
178
200
  vcf_path=vcfs[index],
179
201
  region_lead_grid=False,
202
+ fontsize=fontsize,
203
+ font_family=font_family,
180
204
  mode=mode,
181
205
  rr_ylabel=False,
182
- region_ld_legend=False,
206
+ region_ld_legend=region_ld_legend,
183
207
  gtf_path=None,
184
208
  figax=figax,
185
209
  _get_region_lead=True,
@@ -190,8 +214,8 @@ def plot_stacked_mqq(objects,
190
214
  log=log,
191
215
  **mqq_args_for_each_plot[index]
192
216
  )
193
- lead_variants_is[index] = (lead_i,lead_i2)
194
-
217
+ lead_variants_is[index] = lead_snp_is
218
+ lead_variants_is_color[index] = lead_snp_is_color
195
219
  if len(region_chromatin_files)>0 and mode=="r":
196
220
  xlim_i = axes[-1].get_xlim()
197
221
  fig = _plot_chromatin_state( region_chromatin_files = region_chromatin_files,
@@ -201,7 +225,9 @@ def plot_stacked_mqq(objects,
201
225
  ax = axes[-2],
202
226
  xlim_i=xlim_i,
203
227
  log=log,
204
- verbose=verbose)
228
+ verbose=verbose,
229
+ fontsize = fontsize,
230
+ font_family = font_family)
205
231
  # adjust labels
206
232
  # drop labels for each plot
207
233
  # set a common laebl for all plots
@@ -210,44 +236,44 @@ def plot_stacked_mqq(objects,
210
236
  # title_box = dict(boxstyle='square', facecolor='white', alpha=1.0, edgecolor="black")
211
237
  # title_box = {}
212
238
 
213
- if title_args is None:
214
- title_args = {}
215
- if titles is not None and mode=="r":
216
- if title_pos is None:
217
- title_pos = [0.01,0.01]
218
- for index,title in enumerate(titles):
219
-
220
- current_text = axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='bottom',zorder=999999, **title_args)
221
- r = fig.canvas.get_renderer()
222
- bb = current_text.get_window_extent(renderer=r).transformed(axes[index].transAxes.inverted())
223
- width = bb.width
224
- height = bb.height
225
-
226
- rect = patches.Rectangle((0.0,0.0),
227
- height=height + 0.02*2,
228
- width=width + 0.01*2,
229
- transform=axes[index].transAxes,
230
- linewidth=1,
231
- edgecolor='black',
232
- facecolor='white',
233
- alpha=1.0,
234
- zorder=99998)
235
- axes[index].add_patch(rect)
236
- rect.set(zorder=99998)
237
- else:
238
- if title_pos is None:
239
- title_pos = [0.01,0.97]
240
- for index,title in enumerate(titles):
241
- axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',zorder=999999, **title_args)
239
+ #if title_args is None:
240
+ # title_args = {}
241
+ #if titles is not None and mode=="r":
242
+ # if title_pos is None:
243
+ # title_pos = [0.01,0.99]
244
+ # for index,title in enumerate(titles):
245
+ #
246
+ # current_text = axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',zorder=999999, **title_args)
247
+ # r = fig.canvas.get_renderer()
248
+ # bb = current_text.get_window_extent(renderer=r).transformed(axes[index].transAxes.inverted())
249
+ # width = bb.width
250
+ # height = bb.height
251
+ #
252
+ # rect = patches.Rectangle((0.0,1.0 - height),
253
+ # height=height + 0.02*2,
254
+ # width=width + 0.01*2,
255
+ # transform=axes[index].transAxes,
256
+ # linewidth=1,
257
+ # edgecolor='black',
258
+ # facecolor='white',
259
+ # alpha=1.0,
260
+ # zorder=99998)
261
+ # axes[index].add_patch(rect)
262
+ # rect.set(zorder=99998)
263
+ #else:
264
+ if title_pos is None:
265
+ title_pos = [0.01,0.97]
266
+ for index,title in enumerate(titles):
267
+ axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',zorder=999999, **title_args)
242
268
 
243
269
  ##########################################################################################################################################
244
270
  # draw the line for lead variants
245
- _draw_grid_line_for_lead_variants(mode, lead_variants_is, n_plot, axes, region_lead_grid_line,region_chromatin_files)
271
+ _draw_grid_line_for_lead_variants(mode, lead_variants_is,lead_variants_is_color, n_plot, axes, region_lead_grid_line,region_chromatin_files,region_lead_grids)
246
272
 
247
273
  ##########################################################################################################################################
248
274
  _drop_old_y_labels(axes, n_plot)
249
275
 
250
- _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height )
276
+ _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family)
251
277
 
252
278
  ##########################################################################################################################################
253
279
  save_figure(fig = fig, save = save, keyword= "stacked_" + mode, save_args=save_args, log = log, verbose=verbose)
@@ -260,26 +286,33 @@ def _drop_old_y_labels(axes, n_plot):
260
286
  for index in range(n_plot):
261
287
  axes[index].set_ylabel("")
262
288
 
263
- def _draw_grid_line_for_lead_variants(mode, lead_variants_is, n_plot, axes, region_lead_grid_line,region_chromatin_files):
289
+ def _draw_grid_line_for_lead_variants(mode, lead_variants_is,lead_variants_is_color, n_plot, axes, region_lead_grid_line,region_chromatin_files,region_lead_grids):
264
290
  if len(region_chromatin_files)>0:
265
291
  n_plot_and_track = n_plot+2
266
292
  else:
267
293
  n_plot_and_track = n_plot+1
294
+
295
+ plotted=[None]
268
296
  if mode=="r":
269
297
  for index, sig_is in lead_variants_is.items():
270
- for sig_i in sig_is:
271
- if sig_i is not None:
272
- for each_axis_index in range(n_plot_and_track):
273
- axes[each_axis_index].axvline(x=sig_i, zorder=2,**region_lead_grid_line)
298
+ if index in region_lead_grids:
299
+ for j, sig_i in enumerate(sig_is):
300
+ try:
301
+ region_lead_grid_line["color"] = lead_variants_is_color[index][j]
302
+ except:
303
+ pass
304
+ if sig_i not in plotted:
305
+ for each_axis_index in range(n_plot_and_track):
306
+ axes[each_axis_index].axvline(x=sig_i, zorder=2,**region_lead_grid_line)
274
307
 
275
- def _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ):
308
+ def _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family):
276
309
  gene_track_height_ratio = gene_track_height/(gene_track_height + n_plot*subplot_height)
277
310
  ylabel_height = (1 - gene_track_height_ratio)*0.5 + gene_track_height_ratio
278
311
  if mode=="r":
279
- fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical')
280
- fig.text(0.93, ylabel_height, "Recombination rate(cM/Mb)", va='center', rotation=-90)
312
+ fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical',fontsize=fontsize,family=font_family)
313
+ fig.text(0.93, ylabel_height, "Recombination rate(cM/Mb)", va='center', rotation=-90,fontsize=fontsize,family=font_family)
281
314
  elif mode=="m":
282
- fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical')
315
+ fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical',fontsize=fontsize,family=font_family)
283
316
 
284
317
  def _sort_args(mqq_args, n_plot):
285
318
  mqq_args_for_each_plot={i:{} for i in range(n_plot)}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gwaslab
3
- Version: 3.4.46
3
+ Version: 3.4.48
4
4
  Summary: A collection of handy tools for GWAS SumStats
5
5
  Author-email: Yunye <yunye@gwaslab.com>
6
6
  Project-URL: Homepage, https://cloufield.github.io/gwaslab/
@@ -12,19 +12,19 @@ Requires-Python: <3.11,>=3.9
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  License-File: LICENSE_before_v3.4.39
15
- Requires-Dist: pandas !=1.5,>=1.3
16
- Requires-Dist: numpy <2,>=1.21.2
17
- Requires-Dist: matplotlib !=3.7.2,<3.9,>=3.5
18
- Requires-Dist: seaborn >=0.12
19
- Requires-Dist: scipy >=1.12
20
- Requires-Dist: pySAM ==0.22.1
21
- Requires-Dist: Biopython >=1.79
22
- Requires-Dist: adjustText <=0.8,>=0.7.3
23
- Requires-Dist: liftover >=1.1.13
24
- Requires-Dist: scikit-allel >=1.3.5
25
- Requires-Dist: pyensembl ==2.2.3
26
- Requires-Dist: gtfparse ==1.3.0
27
- Requires-Dist: h5py >=3.10.0
15
+ Requires-Dist: pandas!=1.5,>=1.3
16
+ Requires-Dist: numpy<2,>=1.21.2
17
+ Requires-Dist: matplotlib!=3.7.2,<3.9,>=3.5
18
+ Requires-Dist: seaborn>=0.12
19
+ Requires-Dist: scipy>=1.12
20
+ Requires-Dist: pySAM==0.22.1
21
+ Requires-Dist: Biopython>=1.79
22
+ Requires-Dist: adjustText<=0.8,>=0.7.3
23
+ Requires-Dist: liftover>=1.1.13
24
+ Requires-Dist: scikit-allel>=1.3.5
25
+ Requires-Dist: pyensembl==2.2.3
26
+ Requires-Dist: gtfparse==1.3.0
27
+ Requires-Dist: h5py>=3.10.0
28
28
 
29
29
  # GWASLab
30
30
 
@@ -51,7 +51,7 @@ Warning: Known issues of GWASLab are summarized in [https://cloufield.github.io/
51
51
  ### install via pip
52
52
 
53
53
  ```
54
- pip install gwaslab==3.4.45
54
+ pip install gwaslab==3.4.46
55
55
  ```
56
56
 
57
57
  ```python
@@ -6,20 +6,20 @@ gwaslab/bd_get_hapmap3.py,sha256=asNjQYeGfQi8u3jnfenRvDdKMs5ptql5wpcUzqMlwUI,393
6
6
  gwaslab/cache_manager.py,sha256=HOTnSkCOyGEPLRl90WT8D_6pAdI8d8AzenMIDGuCeWc,28113
7
7
  gwaslab/g_Log.py,sha256=C3Zv-_6c3C9ms8bgQ-ytplz22sjk7euqXYkWr9zNeAs,1573
8
8
  gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- gwaslab/g_Sumstats.py,sha256=TUcFQFyODS_-FYMdXDvrBijG4Qtfi1igIWM-eEgb0nc,35352
9
+ gwaslab/g_Sumstats.py,sha256=U5la-fJCSTN8FNxXjcULcPH8MV9D6YgMaVFNesMTa_o,35854
10
10
  gwaslab/g_SumstatsPair.py,sha256=20snPb4SlI6ftMGVjgxAuyxsxYRQF-GzzlBSnoB-3Lo,8851
11
11
  gwaslab/g_SumstatsT.py,sha256=u_DighLMnMxwTLnqm-B58pA0G6WXRj6pudPyKMVKjSU,2133
12
12
  gwaslab/g_Sumstats_summary.py,sha256=FECvvFXJVKaCX5dggBvvk9YvJ6AbdbcLfjltysX7wEE,6380
13
13
  gwaslab/g_meta.py,sha256=htWlgURWclm9R6UqFcX1a93WN27xny7lGUeyJZOtszQ,2583
14
14
  gwaslab/g_vchange_status.py,sha256=jLoVzMJFhB5k_cJKzHuBNc2HZGBWydAunCNa0n_d54g,1923
15
- gwaslab/g_version.py,sha256=g2bR-qFeFvLADj57VXMT5dufwba2YGD86hfDHRYURfU,1818
15
+ gwaslab/g_version.py,sha256=kB6LiBYcRZElabjDUUEBhF5c5SVUq8vHO0pctDfBqkw,1886
16
16
  gwaslab/hm_casting.py,sha256=FqP4EQl83Q2OKLw004OgLIvUH795TVCGwziLk5jsHqY,11368
17
17
  gwaslab/hm_harmonize_sumstats.py,sha256=1hjUdle2DSKHGBp2BktfFqf-QHU_q2xWl_mPhiYc_ZA,78616
18
18
  gwaslab/hm_rsid_to_chrpos.py,sha256=ODWREO0jPN0RAfNzL5fRzSRANfhiksOvUVPuEsFZQqA,6552
19
19
  gwaslab/io_preformat_input.py,sha256=AZ43WGqVTzbo3XtClWhjRjsj6pBR9stw6JBL_TZ461U,20673
20
- gwaslab/io_read_ldsc.py,sha256=8S9n4imgl4d0WPms_GYld-6uUM5z7iWGiCA-M814kzY,12123
20
+ gwaslab/io_read_ldsc.py,sha256=wsYXpH50IchBKd2dhYloSqc4YgnDkiwMsAweaCoN5Eo,12471
21
21
  gwaslab/io_read_tabular.py,sha256=EG-C6KhCutt4J4LlOMgXnqzJvU-EZXzVhMvaDFnHrMM,2380
22
- gwaslab/io_to_formats.py,sha256=QuGWdvnAamaZAuhymj-0SuNBaKz1maTTyH396gvVaO8,29229
22
+ gwaslab/io_to_formats.py,sha256=m57dGoqmHzAE1E27j9YxYKVCA12_lKd1qCnZtp0WZLw,29401
23
23
  gwaslab/io_to_pickle.py,sha256=HhePU0VcaGni0HTNU0BqoRaOnrr0NOxotgY6ISdx3Ck,1833
24
24
  gwaslab/ldsc_irwls.py,sha256=83JbAMAhD0KOfpv4IJa6LgUDfQjp4XSJveTjnhCBJYQ,6142
25
25
  gwaslab/ldsc_jackknife.py,sha256=XrWHoKS_Xn9StG1I83S2vUMTertsb-GH-_gOFYUhLeU,17715
@@ -28,18 +28,19 @@ gwaslab/ldsc_parse.py,sha256=MBnfgcWlV4oHp9MoDRh1mpilaHhAR15Af77hMFn4-5k,10564
28
28
  gwaslab/ldsc_regressions.py,sha256=yzbGjgNV7u-SWXNPsh9S8y9mK97Bim_Nmad9G9V18ZU,30078
29
29
  gwaslab/ldsc_sumstats.py,sha256=O0olsDxKlh1MJ1gAuEN1t40rxhajOEwOQ20ak7xoDrI,26245
30
30
  gwaslab/qc_check_datatype.py,sha256=kW68uk4dTLOU2b1dHoVat6n0loundDysAjIqxsXW28Q,3379
31
- gwaslab/qc_fix_sumstats.py,sha256=-DQz5dPW6YXXVP-LV2Txa4lJrpZHhqAoKNny6IYAW18,93100
31
+ gwaslab/qc_fix_sumstats.py,sha256=aTX5jf7MVpp6XTiP-rbEyaLAQFsn1gyH9vEH4SLH-GY,93199
32
32
  gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- gwaslab/util_ex_calculate_ldmatrix.py,sha256=LpE__LoYRHLgVKlCHo6lYWlz9LEUVUDqYPEAP-Svbm0,14598
34
- gwaslab/util_ex_calculate_prs.py,sha256=5l1eiZs8YwIpEgp7i3IurP8n5KwQM5awbG9fWSm4iT4,9053
33
+ gwaslab/util_abf_finemapping.py,sha256=LRcopjtkT-iXtKPAJIzR4qjPdhD7nrS_BGit4EW89FM,3054
34
+ gwaslab/util_ex_calculate_ldmatrix.py,sha256=Z_spxbq6SHDS0v84I59YTTF40iyLQIOZbt0dmEcNJjw,15417
35
+ gwaslab/util_ex_calculate_prs.py,sha256=9uJ588Sdj4V0vw3OZ9NeLECwOvW67f0IdLandVPS5RY,9442
35
36
  gwaslab/util_ex_gwascatalog.py,sha256=--Gde9HrsikfYTeFqSaYz0gUODr9wmv_gV6GZGNlElg,7688
36
37
  gwaslab/util_ex_ldproxyfinder.py,sha256=wWNW9wITWozj23gT41LR00WxU-rrHpGKbxs2H_3jEyM,9431
37
- gwaslab/util_ex_ldsc.py,sha256=a-OwyWmDcyinTPRfCNSeNYm6beVsydFeYmRAXAPcRnI,18350
38
+ gwaslab/util_ex_ldsc.py,sha256=dd3QUNX7eOJY_z4mkKIE9Ey_SQGE4ox0efhq28ah_LE,18592
38
39
  gwaslab/util_ex_plink_filter.py,sha256=pK1Yxtv9-J4rMOdVAG7VU9PktvI6-y4FxBiVEH0QuRs,1673
39
40
  gwaslab/util_ex_process_h5.py,sha256=ynFvo3zxgvOxWYL565v2IQf8P6iEuq7UlKQ_ULxrd6Y,2831
40
- gwaslab/util_ex_process_ref.py,sha256=BwS4hmzIWdgmRY_yiG6RJQJHjYcOR-2yZX7kU3s8lPw,16552
41
+ gwaslab/util_ex_process_ref.py,sha256=GQ0ZEWLxGpHLdBs3tqnAqKn3Pqx1A1YvNbYrBLBvXeg,17126
41
42
  gwaslab/util_ex_run_2samplemr.py,sha256=5c0DGF694T9j0Y58L2I7pr1_Z1hfpaatIgix7P5oPA8,9127
42
- gwaslab/util_ex_run_clumping.py,sha256=Y8KeUKuSpGc1a8iI_VKUgVQpAVBd7O9F11p85jY4oW4,7868
43
+ gwaslab/util_ex_run_clumping.py,sha256=bs9CJENMhwVXolCNygaYtso5ikPrdPMiV13tGA0ttxg,7915
43
44
  gwaslab/util_ex_run_coloc.py,sha256=u57h8wPbTCOf6aY5u5DpzK1gv7inuDT8a15UGo-1ras,6288
44
45
  gwaslab/util_ex_run_susie.py,sha256=TXqiwBVq1io7XSlLF2_gNsYgxDLiKNnYE9pIjRWJ1Hc,5315
45
46
  gwaslab/util_in_calculate_gc.py,sha256=MWOXVzJv7SZx4i2_ncRiqsiEOADc7EfghaUzgGy4jaE,2219
@@ -52,21 +53,22 @@ gwaslab/util_in_get_density.py,sha256=kpKXH69acMkeYVG5vs-VbJC3COhmuLBfYco-wuOxgj
52
53
  gwaslab/util_in_get_sig.py,sha256=9kq1GXacknO2YnVmsTli1GlPA728ASweTZ3UKm3Wszo,38783
53
54
  gwaslab/util_in_meta.py,sha256=5K9lIZcIgUy0AERqHy1GvMN2X6dp45JUUgopuDLgt4o,11284
54
55
  gwaslab/util_in_snphwe.py,sha256=-KpIDx6vn_nah6H55IkV2OyjXQVXV13XyBL069WE1wM,1751
55
- gwaslab/viz_aux_annotate_plot.py,sha256=R-1GT89E4NEBAMNTYzNawdi9rjQV5LCnODgnYOOKsys,32184
56
- gwaslab/viz_aux_chromatin.py,sha256=NzbFFpbwAMH-39F8z0qJaExw-JcKYcAlzyzbMkvFo5M,4002
57
- gwaslab/viz_aux_quickfix.py,sha256=Z6ZNEAUFuWVDTzH-qGreNGxPxJLCmqhXtBrvDOgo4g8,18308
56
+ gwaslab/viz_aux_annotate_plot.py,sha256=UTOx-OpFsM_UVphBHxqQZwCFI8bjwwB6CMsgFbAfheQ,32215
57
+ gwaslab/viz_aux_chromatin.py,sha256=7cGmej5EkKO7fxR1b5w8r1oRRl9ofVzFRG52SCYWtz0,4109
58
+ gwaslab/viz_aux_quickfix.py,sha256=5XM-J9D2yp5FVbK6YQKEhSCqAYBLNWSQms9WjpXxVn8,18313
58
59
  gwaslab/viz_aux_reposition_text.py,sha256=iRIP-Rkltlei068HekJcVubiqPrunBqvAoSQ1eHk04M,4304
59
60
  gwaslab/viz_aux_save_figure.py,sha256=nL-aoE8Kg06h7FgleGRBIZjhI-6w5gpn3E1HWMwBig8,2664
60
61
  gwaslab/viz_plot_compare_af.py,sha256=qtXW45-Sq_ugK8ZfqBYMpmf58SKi3lB3YyHnzn_akcE,5344
61
- gwaslab/viz_plot_compare_effect.py,sha256=iA74jMzh-G65U6BeXyQro08tPlJWpNyvtrjFsYHLvFM,49505
62
+ gwaslab/viz_plot_compare_effect.py,sha256=lV-4KSQatTSsYqzEGGTkBu17I2VlVyVh1uJr-kCq630,49585
62
63
  gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
63
64
  gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
64
- gwaslab/viz_plot_miamiplot2.py,sha256=SWv82D8UBbREKsk8EoKth-2w68l6FbXyVLsb_E1hh8o,15882
65
- gwaslab/viz_plot_mqqplot.py,sha256=oVFiLe6Xv_-ryY8I36tGjU9StjM_ust72YSSfnZgaUg,61828
65
+ gwaslab/viz_plot_miamiplot2.py,sha256=Jg5j9qsr8gGydU8AOKU8xRZTNH_3QM8Nxv61Vh12aG0,15732
66
+ gwaslab/viz_plot_mqqplot.py,sha256=q_c_ZDRdirEcdHHnb030h7dTUWAFy9OVuzwbdCzZ3gU,64580
66
67
  gwaslab/viz_plot_qqplot.py,sha256=psQgVpP29686CEZkzQz0iRbApzqy7aE3GGiBcazVvNw,7247
68
+ gwaslab/viz_plot_regional2.py,sha256=tBoGox-4ngL5o_twdIjk_VW6Iam3JDyrPKuttm6_4Sg,36862
67
69
  gwaslab/viz_plot_regionalplot.py,sha256=8u-5-yfy-UaXhaxVVz3Y5k2kBAoqzczUw1hyyD450iI,37983
68
70
  gwaslab/viz_plot_rg_heatmap.py,sha256=PidUsgOiEVt6MfBPCF3_yDhOEytZ-I1q-ZD6_0pFrV4,13713
69
- gwaslab/viz_plot_stackedregional.py,sha256=yWxAJyqA3Kv9PUFTLzgbAu_hP7wi3_3bVVQlJECm8Gc,14687
71
+ gwaslab/viz_plot_stackedregional.py,sha256=AoGMer73P3y-21A2qityrDX-_sIJFRgKzkm8i9zVxKA,16420
70
72
  gwaslab/viz_plot_trumpetplot.py,sha256=ZHdc6WcVx0-oKoj88yglRkmB4bS9pOiEMcuwKW35Yvo,42672
71
73
  gwaslab/data/formatbook.json,sha256=N2nJs80HH98Rsu9FxaSvIQO9J5yIV97WEtAKjRqYwiY,38207
72
74
  gwaslab/data/reference.json,sha256=k8AvvgDsuLxzv-NCJHWvTUZ5q_DLAFxs1Th3jtL313k,11441
@@ -76,9 +78,9 @@ gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW
76
78
  gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
77
79
  gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
78
80
  gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
79
- gwaslab-3.4.46.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
80
- gwaslab-3.4.46.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
81
- gwaslab-3.4.46.dist-info/METADATA,sha256=aw5qahaxh7TAYCLNPdBO1FmHCWQk3mQcOlZohaGqorw,7765
82
- gwaslab-3.4.46.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
83
- gwaslab-3.4.46.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
84
- gwaslab-3.4.46.dist-info/RECORD,,
81
+ gwaslab-3.4.48.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
82
+ gwaslab-3.4.48.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
83
+ gwaslab-3.4.48.dist-info/METADATA,sha256=4Cqofc_AlsSBNtwKwiLBFiDtQsh8UUvWiM_XhBYksxw,7752
84
+ gwaslab-3.4.48.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
85
+ gwaslab-3.4.48.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
86
+ gwaslab-3.4.48.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.1.0)
2
+ Generator: setuptools (73.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5