gwaslab 3.4.45__py3-none-any.whl → 3.4.47__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gwaslab might be problematic. Click here for more details.

@@ -365,6 +365,10 @@ def _plot_recombination_rate(sumstats,pos, region, ax1, rr_path, rr_chr_dict, r
365
365
 
366
366
  rc = rc.loc[(rc["Position(bp)"]<region[2]) & (rc["Position(bp)"]>region[1]),:]
367
367
  ax4.plot(rc_track_offset+rc["Position(bp)"],rc["Rate(cM/Mb)"],color="#5858FF",zorder=1)
368
+
369
+ ax1.set_zorder(ax4.get_zorder()+1)
370
+ ax1.patch.set_visible(False)
371
+
368
372
  if rr_ylabel:
369
373
  ax4.set_ylabel("Recombination rate(cM/Mb)")
370
374
  if rr_lim!="max":
@@ -22,6 +22,7 @@ from gwaslab.bd_common_data import get_number_to_chr
22
22
  from gwaslab.bd_common_data import get_recombination_rate
23
23
  from gwaslab.bd_common_data import get_gtf
24
24
  from gwaslab.viz_aux_reposition_text import adjust_text_position
25
+ from gwaslab.viz_aux_chromatin import _plot_chromatin_state
25
26
  from gwaslab.viz_aux_quickfix import _quick_fix
26
27
  from gwaslab.viz_aux_quickfix import _get_largenumber
27
28
  from gwaslab.viz_aux_quickfix import _quick_add_tchrpos
@@ -37,21 +38,28 @@ from gwaslab.io_to_pickle import load_data_from_pickle
37
38
  from gwaslab.g_Sumstats import Sumstats
38
39
  from gwaslab.viz_aux_save_figure import save_figure
39
40
  from gwaslab.viz_plot_mqqplot import mqqplot
41
+ import matplotlib.patches as patches
40
42
 
41
43
  def plot_stacked_mqq(objects,
42
44
  vcfs=None,
43
45
  mode="r",
44
46
  mqqratio=3,
45
47
  region=None,
48
+ region_chromatin_height=0.1,
49
+ region_chromatin_files = None,
50
+ region_chromatin_labels= None,
46
51
  titles= None,
47
52
  title_pos=None,
48
53
  title_args=None,
54
+ #title_box = None,
49
55
  gtf=None,
50
56
  gene_track_height=0.5,
51
57
  fig_args=None,
52
58
  region_hspace=0.05,
53
59
  subplot_height=4,
54
60
  region_lead_grid_line=None,
61
+ fontsize=9,
62
+ font_family="Arial",
55
63
  build="99",
56
64
  save=None,
57
65
  save_args=None,
@@ -72,11 +80,16 @@ def plot_stacked_mqq(objects,
72
80
  fig_args = {"dpi":200}
73
81
  if region_lead_grid_line is None:
74
82
  region_lead_grid_line = {"alpha":0.5,"linewidth" : 2,"linestyle":"--","color":"#FF0000"}
75
- if title_pos is None:
76
- title_pos = [0.01,0.97]
83
+ if region_chromatin_files is None:
84
+ region_chromatin_files = []
85
+ region_chromatin_height = len(region_chromatin_files) * region_chromatin_height
86
+ if region_chromatin_labels is None:
87
+ region_chromatin_labels = []
77
88
  if title_args is None:
78
- title_args = {}
79
-
89
+ title_args = {"family":"Arial"}
90
+ else:
91
+ if "family" not in title_args.keys():
92
+ title_args["family"] = "Arial"
80
93
  # create figure and axes ##################################################################################################################
81
94
  if mode=="r":
82
95
  if len(vcfs)==1:
@@ -84,9 +97,15 @@ def plot_stacked_mqq(objects,
84
97
  n_plot = len(sumstats_list)
85
98
  n_plot_plus_gene_track = n_plot + 1
86
99
 
100
+ if len(region_chromatin_files)>0 and mode=="r":
101
+ height_ratios = [1 for i in range(n_plot_plus_gene_track-1)]+[region_chromatin_height]+[gene_track_height]
102
+ n_plot_plus_gene_track +=1
103
+ else:
104
+ height_ratios = [1 for i in range(n_plot_plus_gene_track-1)]+[gene_track_height]
105
+
87
106
  fig_args["figsize"] = [16,subplot_height*n_plot_plus_gene_track]
88
107
  fig, axes = plt.subplots(n_plot_plus_gene_track, 1, sharex=True,
89
- gridspec_kw={'height_ratios': [1 for i in range(n_plot_plus_gene_track-1)]+[gene_track_height]},
108
+ gridspec_kw={'height_ratios': height_ratios},
90
109
  **fig_args)
91
110
  plt.subplots_adjust(hspace=region_hspace)
92
111
  elif mode=="m":
@@ -119,6 +138,7 @@ def plot_stacked_mqq(objects,
119
138
  ##########################################################################################################################################
120
139
  # a dict to store lead variants of each plot
121
140
  lead_variants_is={}
141
+ lead_variants_is_color ={}
122
142
 
123
143
  ##########################################################################################################################################
124
144
  # plot manhattan plot
@@ -132,7 +152,7 @@ def plot_stacked_mqq(objects,
132
152
  #################################################################
133
153
  if index==0:
134
154
  # plot last m and gene track
135
- fig,log,lead_i,lead_i2 = mqqplot(sumstats,
155
+ fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
136
156
  chrom="CHR",
137
157
  pos="POS",
138
158
  p="P",
@@ -141,6 +161,8 @@ def plot_stacked_mqq(objects,
141
161
  snpid="SNPID",
142
162
  vcf_path=vcfs[index],
143
163
  mode=mode,
164
+ fontsize=fontsize,
165
+ font_family=font_family,
144
166
  region_lead_grid=False,
145
167
  gtf_path="default",
146
168
  rr_ylabel=False,
@@ -153,10 +175,11 @@ def plot_stacked_mqq(objects,
153
175
  log=log,
154
176
  **mqq_args_for_each_plot[index]
155
177
  )
156
- lead_variants_is[index] = (lead_i,lead_i2)
178
+ lead_variants_is[index] = lead_snp_is
179
+ lead_variants_is_color[index] = lead_snp_is_color
157
180
  else:
158
181
  # plot only the scatter plot
159
- fig,log,lead_i,lead_i2 = mqqplot(sumstats,
182
+ fig,log,lead_snp_is,lead_snp_is_color = mqqplot(sumstats,
160
183
  chrom="CHR",
161
184
  pos="POS",
162
185
  p="P",
@@ -165,6 +188,8 @@ def plot_stacked_mqq(objects,
165
188
  snpid="SNPID",
166
189
  vcf_path=vcfs[index],
167
190
  region_lead_grid=False,
191
+ fontsize=fontsize,
192
+ font_family=font_family,
168
193
  mode=mode,
169
194
  rr_ylabel=False,
170
195
  region_ld_legend=False,
@@ -178,24 +203,66 @@ def plot_stacked_mqq(objects,
178
203
  log=log,
179
204
  **mqq_args_for_each_plot[index]
180
205
  )
181
- lead_variants_is[index] = (lead_i,lead_i2)
182
-
206
+ lead_variants_is[index] = lead_snp_is
207
+ lead_variants_is_color[index] = lead_snp_is_color
208
+ if len(region_chromatin_files)>0 and mode=="r":
209
+ xlim_i = axes[-1].get_xlim()
210
+ fig = _plot_chromatin_state( region_chromatin_files = region_chromatin_files,
211
+ region_chromatin_labels = region_chromatin_labels,
212
+ region = region,
213
+ fig = fig,
214
+ ax = axes[-2],
215
+ xlim_i=xlim_i,
216
+ log=log,
217
+ verbose=verbose,
218
+ fontsize = fontsize,
219
+ font_family = font_family)
183
220
  # adjust labels
184
221
  # drop labels for each plot
185
222
  # set a common laebl for all plots
186
223
 
224
+ #if title_box is None:
225
+ # title_box = dict(boxstyle='square', facecolor='white', alpha=1.0, edgecolor="black")
226
+ # title_box = {}
227
+
228
+ #if title_args is None:
229
+ # title_args = {}
230
+ #if titles is not None and mode=="r":
231
+ # if title_pos is None:
232
+ # title_pos = [0.01,0.99]
233
+ # for index,title in enumerate(titles):
234
+ #
235
+ # current_text = axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',zorder=999999, **title_args)
236
+ # r = fig.canvas.get_renderer()
237
+ # bb = current_text.get_window_extent(renderer=r).transformed(axes[index].transAxes.inverted())
238
+ # width = bb.width
239
+ # height = bb.height
240
+ #
241
+ # rect = patches.Rectangle((0.0,1.0 - height),
242
+ # height=height + 0.02*2,
243
+ # width=width + 0.01*2,
244
+ # transform=axes[index].transAxes,
245
+ # linewidth=1,
246
+ # edgecolor='black',
247
+ # facecolor='white',
248
+ # alpha=1.0,
249
+ # zorder=99998)
250
+ # axes[index].add_patch(rect)
251
+ # rect.set(zorder=99998)
252
+ #else:
253
+ if title_pos is None:
254
+ title_pos = [0.01,0.97]
255
+ for index,title in enumerate(titles):
256
+ axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',zorder=999999, **title_args)
187
257
 
188
- if titles is not None:
189
- for index,title in enumerate(titles):
190
- axes[index].text(title_pos[0], title_pos[1] , title, transform=axes[index].transAxes,ha="left", va='top',**title_args)
191
258
  ##########################################################################################################################################
192
259
  # draw the line for lead variants
193
- _draw_grid_line_for_lead_variants(mode, lead_variants_is, n_plot, axes, region_lead_grid_line)
260
+ _draw_grid_line_for_lead_variants(mode, lead_variants_is,lead_variants_is_color, n_plot, axes, region_lead_grid_line,region_chromatin_files)
194
261
 
195
262
  ##########################################################################################################################################
196
263
  _drop_old_y_labels(axes, n_plot)
197
264
 
198
- _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height )
265
+ _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family)
199
266
 
200
267
  ##########################################################################################################################################
201
268
  save_figure(fig = fig, save = save, keyword= "stacked_" + mode, save_args=save_args, log = log, verbose=verbose)
@@ -208,22 +275,30 @@ def _drop_old_y_labels(axes, n_plot):
208
275
  for index in range(n_plot):
209
276
  axes[index].set_ylabel("")
210
277
 
211
- def _draw_grid_line_for_lead_variants(mode, lead_variants_is, n_plot, axes, region_lead_grid_line):
278
+ def _draw_grid_line_for_lead_variants(mode, lead_variants_is,lead_variants_is_color, n_plot, axes, region_lead_grid_line,region_chromatin_files):
279
+ if len(region_chromatin_files)>0:
280
+ n_plot_and_track = n_plot+2
281
+ else:
282
+ n_plot_and_track = n_plot+1
212
283
  if mode=="r":
213
284
  for index, sig_is in lead_variants_is.items():
214
- for sig_i in sig_is:
285
+ for j, sig_i in enumerate(sig_is):
286
+ try:
287
+ region_lead_grid_line["color"]=lead_variants_is_color[index][j]
288
+ except:
289
+ pass
215
290
  if sig_i is not None:
216
- for each_axis_index in range(n_plot + 1):
291
+ for each_axis_index in range(n_plot_and_track):
217
292
  axes[each_axis_index].axvline(x=sig_i, zorder=2,**region_lead_grid_line)
218
293
 
219
- def _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ):
294
+ def _add_new_y_label(mode, fig, gene_track_height,n_plot,subplot_height ,fontsize,font_family):
220
295
  gene_track_height_ratio = gene_track_height/(gene_track_height + n_plot*subplot_height)
221
296
  ylabel_height = (1 - gene_track_height_ratio)*0.5 + gene_track_height_ratio
222
297
  if mode=="r":
223
- fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical')
224
- fig.text(0.93, ylabel_height, "Recombination rate(cM/Mb)", va='center', rotation=-90)
298
+ fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical',fontsize=fontsize,family=font_family)
299
+ fig.text(0.93, ylabel_height, "Recombination rate(cM/Mb)", va='center', rotation=-90,fontsize=fontsize,family=font_family)
225
300
  elif mode=="m":
226
- fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical')
301
+ fig.text(0.08, ylabel_height , "$-log_{10}(P)$", va='center', rotation='vertical',fontsize=fontsize,family=font_family)
227
302
 
228
303
  def _sort_args(mqq_args, n_plot):
229
304
  mqq_args_for_each_plot={i:{} for i in range(n_plot)}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gwaslab
3
- Version: 3.4.45
3
+ Version: 3.4.47
4
4
  Summary: A collection of handy tools for GWAS SumStats
5
5
  Author-email: Yunye <yunye@gwaslab.com>
6
6
  Project-URL: Homepage, https://cloufield.github.io/gwaslab/
@@ -13,8 +13,8 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  License-File: LICENSE_before_v3.4.39
15
15
  Requires-Dist: pandas !=1.5,>=1.3
16
- Requires-Dist: numpy >=1.21.2
17
- Requires-Dist: matplotlib !=3.7.2,>=3.5
16
+ Requires-Dist: numpy <2,>=1.21.2
17
+ Requires-Dist: matplotlib !=3.7.2,<3.9,>=3.5
18
18
  Requires-Dist: seaborn >=0.12
19
19
  Requires-Dist: scipy >=1.12
20
20
  Requires-Dist: pySAM ==0.22.1
@@ -51,7 +51,7 @@ Warning: Known issues of GWASLab are summarized in [https://cloufield.github.io/
51
51
  ### install via pip
52
52
 
53
53
  ```
54
- pip install gwaslab==3.4.43
54
+ pip install gwaslab==3.4.45
55
55
  ```
56
56
 
57
57
  ```python
@@ -90,7 +90,7 @@ Create a Python 3.9 environment and install gwaslab using pip:
90
90
  ```
91
91
  conda env create -n gwaslab_test -c conda-forge python=3.9
92
92
  conda activate gwaslab
93
- pip install gwaslab==3.4.43
93
+ pip install gwaslab==3.4.45
94
94
  ```
95
95
 
96
96
  or create a new environment using yml file [environment_3.4.40.yml](https://github.com/Cloufield/gwaslab/blob/main/environment_3.4.40.yml)
@@ -1,25 +1,25 @@
1
- gwaslab/__init__.py,sha256=dFnrh4L620F5JirsSF98SmkuligA-fybIGdBF6r9Ims,2386
2
- gwaslab/bd_common_data.py,sha256=v98X3tdRNOVE2gCiSHkfyBb0pSIjTk5IFG8A725Oj3o,12639
1
+ gwaslab/__init__.py,sha256=7TKJaODdpeuQKibL7gIEa4MtyQ0pmrU-vIHQ-Et27lQ,2433
2
+ gwaslab/bd_common_data.py,sha256=qr6OMbBaTH2Smfu8347SO9NmF410tn8dq8pRGF5-OpY,13751
3
3
  gwaslab/bd_config.py,sha256=TP-r-DPhJD3XnRYZbw9bQHXaDIkiRgK8bG9HCt-UaLc,580
4
4
  gwaslab/bd_download.py,sha256=cDDk2C5IvjeAzvPvVYGTkI4Ss33DUtEDjGo8eAbQRvY,15663
5
5
  gwaslab/bd_get_hapmap3.py,sha256=asNjQYeGfQi8u3jnfenRvDdKMs5ptql5wpcUzqMlwUI,3937
6
6
  gwaslab/cache_manager.py,sha256=HOTnSkCOyGEPLRl90WT8D_6pAdI8d8AzenMIDGuCeWc,28113
7
7
  gwaslab/g_Log.py,sha256=C3Zv-_6c3C9ms8bgQ-ytplz22sjk7euqXYkWr9zNeAs,1573
8
8
  gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- gwaslab/g_Sumstats.py,sha256=NOEQd00guGch_GIt5bHv1wcrAvETfChqzmtgm-nIx_I,35298
9
+ gwaslab/g_Sumstats.py,sha256=TUcFQFyODS_-FYMdXDvrBijG4Qtfi1igIWM-eEgb0nc,35352
10
10
  gwaslab/g_SumstatsPair.py,sha256=20snPb4SlI6ftMGVjgxAuyxsxYRQF-GzzlBSnoB-3Lo,8851
11
11
  gwaslab/g_SumstatsT.py,sha256=u_DighLMnMxwTLnqm-B58pA0G6WXRj6pudPyKMVKjSU,2133
12
12
  gwaslab/g_Sumstats_summary.py,sha256=FECvvFXJVKaCX5dggBvvk9YvJ6AbdbcLfjltysX7wEE,6380
13
13
  gwaslab/g_meta.py,sha256=htWlgURWclm9R6UqFcX1a93WN27xny7lGUeyJZOtszQ,2583
14
14
  gwaslab/g_vchange_status.py,sha256=jLoVzMJFhB5k_cJKzHuBNc2HZGBWydAunCNa0n_d54g,1923
15
- gwaslab/g_version.py,sha256=49_gR8lEQ_jgmfO9XJszEzuzDIESj5dHj6gta3Ilkmw,1818
15
+ gwaslab/g_version.py,sha256=_mujOAftzn4ic9p92turA93xxg-RqxoWIqVfJLiNaSg,1886
16
16
  gwaslab/hm_casting.py,sha256=FqP4EQl83Q2OKLw004OgLIvUH795TVCGwziLk5jsHqY,11368
17
- gwaslab/hm_harmonize_sumstats.py,sha256=ympk2MZkbb0MnZ1n2ajkV36L8EAm7nBEaYhjqjI38tU,78548
17
+ gwaslab/hm_harmonize_sumstats.py,sha256=1hjUdle2DSKHGBp2BktfFqf-QHU_q2xWl_mPhiYc_ZA,78616
18
18
  gwaslab/hm_rsid_to_chrpos.py,sha256=ODWREO0jPN0RAfNzL5fRzSRANfhiksOvUVPuEsFZQqA,6552
19
- gwaslab/io_preformat_input.py,sha256=w62JLAr16Ru0EgUtBCEV2eXRO89OqhidQxwf2IPAM38,20014
19
+ gwaslab/io_preformat_input.py,sha256=AZ43WGqVTzbo3XtClWhjRjsj6pBR9stw6JBL_TZ461U,20673
20
20
  gwaslab/io_read_ldsc.py,sha256=8S9n4imgl4d0WPms_GYld-6uUM5z7iWGiCA-M814kzY,12123
21
21
  gwaslab/io_read_tabular.py,sha256=EG-C6KhCutt4J4LlOMgXnqzJvU-EZXzVhMvaDFnHrMM,2380
22
- gwaslab/io_to_formats.py,sha256=QuGWdvnAamaZAuhymj-0SuNBaKz1maTTyH396gvVaO8,29229
22
+ gwaslab/io_to_formats.py,sha256=m57dGoqmHzAE1E27j9YxYKVCA12_lKd1qCnZtp0WZLw,29401
23
23
  gwaslab/io_to_pickle.py,sha256=HhePU0VcaGni0HTNU0BqoRaOnrr0NOxotgY6ISdx3Ck,1833
24
24
  gwaslab/ldsc_irwls.py,sha256=83JbAMAhD0KOfpv4IJa6LgUDfQjp4XSJveTjnhCBJYQ,6142
25
25
  gwaslab/ldsc_jackknife.py,sha256=XrWHoKS_Xn9StG1I83S2vUMTertsb-GH-_gOFYUhLeU,17715
@@ -28,16 +28,16 @@ gwaslab/ldsc_parse.py,sha256=MBnfgcWlV4oHp9MoDRh1mpilaHhAR15Af77hMFn4-5k,10564
28
28
  gwaslab/ldsc_regressions.py,sha256=yzbGjgNV7u-SWXNPsh9S8y9mK97Bim_Nmad9G9V18ZU,30078
29
29
  gwaslab/ldsc_sumstats.py,sha256=O0olsDxKlh1MJ1gAuEN1t40rxhajOEwOQ20ak7xoDrI,26245
30
30
  gwaslab/qc_check_datatype.py,sha256=kW68uk4dTLOU2b1dHoVat6n0loundDysAjIqxsXW28Q,3379
31
- gwaslab/qc_fix_sumstats.py,sha256=cpJibJ_77p4cg39R4zRunhOK2deIK4PfQA9wmYZgyqk,92745
31
+ gwaslab/qc_fix_sumstats.py,sha256=-DQz5dPW6YXXVP-LV2Txa4lJrpZHhqAoKNny6IYAW18,93100
32
32
  gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- gwaslab/util_ex_calculate_ldmatrix.py,sha256=LpE__LoYRHLgVKlCHo6lYWlz9LEUVUDqYPEAP-Svbm0,14598
34
- gwaslab/util_ex_calculate_prs.py,sha256=5l1eiZs8YwIpEgp7i3IurP8n5KwQM5awbG9fWSm4iT4,9053
33
+ gwaslab/util_ex_calculate_ldmatrix.py,sha256=Z_spxbq6SHDS0v84I59YTTF40iyLQIOZbt0dmEcNJjw,15417
34
+ gwaslab/util_ex_calculate_prs.py,sha256=9uJ588Sdj4V0vw3OZ9NeLECwOvW67f0IdLandVPS5RY,9442
35
35
  gwaslab/util_ex_gwascatalog.py,sha256=--Gde9HrsikfYTeFqSaYz0gUODr9wmv_gV6GZGNlElg,7688
36
36
  gwaslab/util_ex_ldproxyfinder.py,sha256=wWNW9wITWozj23gT41LR00WxU-rrHpGKbxs2H_3jEyM,9431
37
37
  gwaslab/util_ex_ldsc.py,sha256=a-OwyWmDcyinTPRfCNSeNYm6beVsydFeYmRAXAPcRnI,18350
38
38
  gwaslab/util_ex_plink_filter.py,sha256=pK1Yxtv9-J4rMOdVAG7VU9PktvI6-y4FxBiVEH0QuRs,1673
39
39
  gwaslab/util_ex_process_h5.py,sha256=ynFvo3zxgvOxWYL565v2IQf8P6iEuq7UlKQ_ULxrd6Y,2831
40
- gwaslab/util_ex_process_ref.py,sha256=BwS4hmzIWdgmRY_yiG6RJQJHjYcOR-2yZX7kU3s8lPw,16552
40
+ gwaslab/util_ex_process_ref.py,sha256=GQ0ZEWLxGpHLdBs3tqnAqKn3Pqx1A1YvNbYrBLBvXeg,17126
41
41
  gwaslab/util_ex_run_2samplemr.py,sha256=5c0DGF694T9j0Y58L2I7pr1_Z1hfpaatIgix7P5oPA8,9127
42
42
  gwaslab/util_ex_run_clumping.py,sha256=Y8KeUKuSpGc1a8iI_VKUgVQpAVBd7O9F11p85jY4oW4,7868
43
43
  gwaslab/util_ex_run_coloc.py,sha256=u57h8wPbTCOf6aY5u5DpzK1gv7inuDT8a15UGo-1ras,6288
@@ -47,23 +47,27 @@ gwaslab/util_in_calculate_power.py,sha256=JfHJFg3tNF0f4NHgWlzVW2mSxCiP07mAHIyEfV
47
47
  gwaslab/util_in_convert_h2.py,sha256=a8Cbudt3xn9WP2bPc-7ysuowB-LYub8j8GeDXl7Lk7Q,6483
48
48
  gwaslab/util_in_correct_winnerscurse.py,sha256=Gp--yAQ8MMzdkWIvXP9C1BHVjZc-YzqHfYWhAj19w9w,2110
49
49
  gwaslab/util_in_fill_data.py,sha256=gdTwYA6FvBMnrtxAeL0lEj_Z0aGIoRNPScWDlJvZWeQ,14021
50
- gwaslab/util_in_filter_value.py,sha256=6yz3omukfqhmkfGZwGtr2BPQ6FcSTj4l6o7EhPMXRz0,22100
50
+ gwaslab/util_in_filter_value.py,sha256=dY4X66N9A4MHCRHjPqLYFufMM91ggLRwUBf_nJYh8Lg,23605
51
51
  gwaslab/util_in_get_density.py,sha256=kpKXH69acMkeYVG5vs-VbJC3COhmuLBfYco-wuOxgjc,3934
52
- gwaslab/util_in_get_sig.py,sha256=atyBJZCWGUSgy-nvIR8_a_isseq1nKhzTaRVG2LbKQk,37762
52
+ gwaslab/util_in_get_sig.py,sha256=9kq1GXacknO2YnVmsTli1GlPA728ASweTZ3UKm3Wszo,38783
53
+ gwaslab/util_in_meta.py,sha256=5K9lIZcIgUy0AERqHy1GvMN2X6dp45JUUgopuDLgt4o,11284
54
+ gwaslab/util_in_snphwe.py,sha256=-KpIDx6vn_nah6H55IkV2OyjXQVXV13XyBL069WE1wM,1751
53
55
  gwaslab/viz_aux_annotate_plot.py,sha256=R-1GT89E4NEBAMNTYzNawdi9rjQV5LCnODgnYOOKsys,32184
56
+ gwaslab/viz_aux_chromatin.py,sha256=7cGmej5EkKO7fxR1b5w8r1oRRl9ofVzFRG52SCYWtz0,4109
54
57
  gwaslab/viz_aux_quickfix.py,sha256=Z6ZNEAUFuWVDTzH-qGreNGxPxJLCmqhXtBrvDOgo4g8,18308
55
58
  gwaslab/viz_aux_reposition_text.py,sha256=iRIP-Rkltlei068HekJcVubiqPrunBqvAoSQ1eHk04M,4304
56
59
  gwaslab/viz_aux_save_figure.py,sha256=nL-aoE8Kg06h7FgleGRBIZjhI-6w5gpn3E1HWMwBig8,2664
57
60
  gwaslab/viz_plot_compare_af.py,sha256=qtXW45-Sq_ugK8ZfqBYMpmf58SKi3lB3YyHnzn_akcE,5344
58
- gwaslab/viz_plot_compare_effect.py,sha256=8om3y6YQfnOk4FfkKSpKr2KqJcsMeCwQ6FRRKbDrm3U,49366
61
+ gwaslab/viz_plot_compare_effect.py,sha256=iA74jMzh-G65U6BeXyQro08tPlJWpNyvtrjFsYHLvFM,49505
59
62
  gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
60
63
  gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
61
64
  gwaslab/viz_plot_miamiplot2.py,sha256=SWv82D8UBbREKsk8EoKth-2w68l6FbXyVLsb_E1hh8o,15882
62
- gwaslab/viz_plot_mqqplot.py,sha256=PzRWnm11whxww7ut-bzFkj1sbPc_c0OP7yRpIgYo2iQ,61739
65
+ gwaslab/viz_plot_mqqplot.py,sha256=udOTBKSX239KLFNauhHGDJHp0Viu18NkGwFn5GtAHuM,63297
63
66
  gwaslab/viz_plot_qqplot.py,sha256=psQgVpP29686CEZkzQz0iRbApzqy7aE3GGiBcazVvNw,7247
64
- gwaslab/viz_plot_regionalplot.py,sha256=PBIWkNj2fj-dRLKQJNpM8wor5jya2anqix0-UYLE0Is,37901
67
+ gwaslab/viz_plot_regional2.py,sha256=6Dfbq5vFm5B63nLUpaTrlq96x4CruIgJu0TXXq3a_Ck,34546
68
+ gwaslab/viz_plot_regionalplot.py,sha256=8u-5-yfy-UaXhaxVVz3Y5k2kBAoqzczUw1hyyD450iI,37983
65
69
  gwaslab/viz_plot_rg_heatmap.py,sha256=PidUsgOiEVt6MfBPCF3_yDhOEytZ-I1q-ZD6_0pFrV4,13713
66
- gwaslab/viz_plot_stackedregional.py,sha256=EAHz5SZGengZ_pxcOg62ZRimGRz6_goQlp9MLCwmeZc,11890
70
+ gwaslab/viz_plot_stackedregional.py,sha256=HISwtPDV84mT3PS41e2sXq77GPBujgSKVX1mQ4bEeKs,15820
67
71
  gwaslab/viz_plot_trumpetplot.py,sha256=ZHdc6WcVx0-oKoj88yglRkmB4bS9pOiEMcuwKW35Yvo,42672
68
72
  gwaslab/data/formatbook.json,sha256=N2nJs80HH98Rsu9FxaSvIQO9J5yIV97WEtAKjRqYwiY,38207
69
73
  gwaslab/data/reference.json,sha256=k8AvvgDsuLxzv-NCJHWvTUZ5q_DLAFxs1Th3jtL313k,11441
@@ -73,9 +77,9 @@ gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW
73
77
  gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
74
78
  gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
75
79
  gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
76
- gwaslab-3.4.45.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
77
- gwaslab-3.4.45.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
78
- gwaslab-3.4.45.dist-info/METADATA,sha256=5FN5dbVypNPET635Eooi01_1NDFD1dNr1T9Jv0JXmLc,7757
79
- gwaslab-3.4.45.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
80
- gwaslab-3.4.45.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
81
- gwaslab-3.4.45.dist-info/RECORD,,
80
+ gwaslab-3.4.47.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
81
+ gwaslab-3.4.47.dist-info/LICENSE_before_v3.4.39,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
82
+ gwaslab-3.4.47.dist-info/METADATA,sha256=G_RLrYWZe0z6Wbvyl_g7rXnJKoZ6HFKUHM66ogtfyug,7765
83
+ gwaslab-3.4.47.dist-info/WHEEL,sha256=y4mX-SOX4fYIkonsAGA5N0Oy-8_gI4FXw5HNI1xqvWg,91
84
+ gwaslab-3.4.47.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
85
+ gwaslab-3.4.47.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (70.2.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5