gwaslab 3.4.37__py3-none-any.whl → 3.4.38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of gwaslab might be problematic. Click here for more details.

Files changed (37) hide show
  1. gwaslab/data/formatbook.json +722 -721
  2. gwaslab/g_Log.py +8 -0
  3. gwaslab/g_Sumstats.py +26 -147
  4. gwaslab/g_SumstatsPair.py +6 -2
  5. gwaslab/g_Sumstats_summary.py +3 -3
  6. gwaslab/g_version.py +2 -2
  7. gwaslab/hm_casting.py +29 -15
  8. gwaslab/hm_harmonize_sumstats.py +291 -163
  9. gwaslab/hm_rsid_to_chrpos.py +1 -1
  10. gwaslab/io_preformat_input.py +43 -37
  11. gwaslab/io_to_formats.py +428 -295
  12. gwaslab/qc_check_datatype.py +3 -3
  13. gwaslab/qc_fix_sumstats.py +793 -682
  14. gwaslab/util_ex_calculate_ldmatrix.py +29 -11
  15. gwaslab/util_ex_gwascatalog.py +1 -1
  16. gwaslab/util_ex_ldproxyfinder.py +1 -1
  17. gwaslab/util_ex_process_ref.py +3 -3
  18. gwaslab/util_ex_run_coloc.py +26 -4
  19. gwaslab/util_in_convert_h2.py +1 -1
  20. gwaslab/util_in_fill_data.py +2 -2
  21. gwaslab/util_in_filter_value.py +122 -34
  22. gwaslab/util_in_get_density.py +2 -2
  23. gwaslab/util_in_get_sig.py +41 -9
  24. gwaslab/viz_aux_quickfix.py +24 -19
  25. gwaslab/viz_aux_reposition_text.py +7 -4
  26. gwaslab/viz_aux_save_figure.py +6 -5
  27. gwaslab/viz_plot_compare_af.py +5 -5
  28. gwaslab/viz_plot_miamiplot2.py +28 -20
  29. gwaslab/viz_plot_mqqplot.py +109 -72
  30. gwaslab/viz_plot_qqplot.py +11 -8
  31. gwaslab/viz_plot_regionalplot.py +3 -1
  32. gwaslab/viz_plot_trumpetplot.py +15 -6
  33. {gwaslab-3.4.37.dist-info → gwaslab-3.4.38.dist-info}/METADATA +2 -2
  34. {gwaslab-3.4.37.dist-info → gwaslab-3.4.38.dist-info}/RECORD +37 -37
  35. {gwaslab-3.4.37.dist-info → gwaslab-3.4.38.dist-info}/LICENSE +0 -0
  36. {gwaslab-3.4.37.dist-info → gwaslab-3.4.38.dist-info}/WHEEL +0 -0
  37. {gwaslab-3.4.37.dist-info → gwaslab-3.4.38.dist-info}/top_level.txt +0 -0
@@ -66,7 +66,7 @@ def plottrumpet(mysumstats,
66
66
  anno_source = "ensembl",
67
67
  anno_max_iter=100,
68
68
  arm_scale=1,
69
- repel_force=0.05,
69
+ repel_force=0.01,
70
70
  ylabel="Effect size",
71
71
  xlabel="Minor allele frequency",
72
72
  xticks = None,
@@ -99,7 +99,7 @@ def plottrumpet(mysumstats,
99
99
  xticks = [0,0.01,0.05,0.1,0.2,0.5]
100
100
  xticklabels = xticks
101
101
  if figargs is None:
102
- figargs={"figsize":(10,15)}
102
+ figargs={"figsize":(10,8)}
103
103
  if scatter_args is None:
104
104
  scatter_args ={}
105
105
  if hue is not None:
@@ -307,6 +307,7 @@ def plottrumpet(mysumstats,
307
307
 
308
308
  if ylim is not None:
309
309
  ax.set_ylim(ylim)
310
+
310
311
  if yticks is not None:
311
312
  ax.set_yticks(yticks, yticklabels)
312
313
 
@@ -337,8 +338,8 @@ def plottrumpet(mysumstats,
337
338
  texts_d=[]
338
339
 
339
340
  if len(variants_toanno)>0:
340
-
341
- maxy = max(variants_toanno[beta].abs().max(),1.5)
341
+ maxy = variants_toanno[beta].abs().max()
342
+ #maxy = max(variants_toanno[beta].abs().max(),1.5)
342
343
  variants_toanno["ADJUSTED_i"] = np.nan
343
344
  y_span = 0.5
344
345
 
@@ -348,6 +349,9 @@ def plottrumpet(mysumstats,
348
349
  variants_toanno = variants_toanno.sort_values(by=maf, key= np.abs, ascending = True)
349
350
 
350
351
  if anno_style == "expand":
352
+
353
+ min_factor=None
354
+
351
355
  if len(variants_toanno.loc[variants_toanno[beta]>0, "ADJUSTED_i"])>1:
352
356
  variants_toanno.loc[variants_toanno[beta]>0, "ADJUSTED_i"] = adjust_text_position(variants_toanno.loc[variants_toanno[beta]>0,maf].values.copy(),
353
357
  y_span,
@@ -355,7 +359,7 @@ def plottrumpet(mysumstats,
355
359
  max_iter=anno_max_iter,
356
360
  log=log,
357
361
  amode=xscale,
358
- verbose=verbose)
362
+ verbose=verbose,min_factor=min_factor)
359
363
 
360
364
  if len(variants_toanno.loc[variants_toanno[beta]<0, "ADJUSTED_i"])>1:
361
365
  variants_toanno.loc[variants_toanno[beta]<0, "ADJUSTED_i"] = adjust_text_position(variants_toanno.loc[variants_toanno[beta]<0,maf].values.copy(),
@@ -364,10 +368,12 @@ def plottrumpet(mysumstats,
364
368
  max_iter=anno_max_iter,
365
369
  log=log,
366
370
  amode=xscale,
367
- verbose=verbose)
371
+ verbose=verbose,min_factor=min_factor)
368
372
 
369
373
 
370
374
  for variants_toanno_half in [variants_toanno.loc[variants_toanno[beta]<0,:], variants_toanno.loc[variants_toanno[beta]>0,:]]:
375
+ if len(variants_toanno_half)<1:
376
+ continue
371
377
  last_pos = min(variants_toanno_half[maf])/2
372
378
  for index, row in variants_toanno_half.iterrows():
373
379
 
@@ -395,6 +401,7 @@ def plottrumpet(mysumstats,
395
401
 
396
402
  if anno_style=="tight":
397
403
  texts_d.append(ax.text(row[maf], row[beta], row[anno]))
404
+
398
405
  if anno_style=="tight":
399
406
  adjust_text(texts_d,
400
407
  autoalign =True,
@@ -404,6 +411,8 @@ def plottrumpet(mysumstats,
404
411
  expand_points=(0.5,0.5),
405
412
  force_objects=(0.5,0.5),
406
413
  ax=ax)
414
+
415
+
407
416
  ############ Annotation ##################################################################################################
408
417
  if mode=="q":
409
418
  save_figure(fig, save, keyword="trumpet_q",save_args=save_args, log=log, verbose=verbose)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gwaslab
3
- Version: 3.4.37
3
+ Version: 3.4.38
4
4
  Summary: A collection of handy tools for GWAS SumStats
5
5
  Author-email: Yunye <yunye@gwaslab.com>
6
6
  Project-URL: Homepage, https://cloufield.github.io/gwaslab/
@@ -14,7 +14,7 @@ License-File: LICENSE
14
14
  Requires-Dist: pandas !=1.5,>=1.3
15
15
  Requires-Dist: numpy >=1.21.2
16
16
  Requires-Dist: matplotlib !=3.7.2,>=3.5
17
- Requires-Dist: seaborn >=0.11.1
17
+ Requires-Dist: seaborn >=0.12
18
18
  Requires-Dist: scipy >=1.12
19
19
  Requires-Dist: pySAM <0.20,>=0.18.1
20
20
  Requires-Dist: Biopython >=1.79
@@ -3,61 +3,61 @@ gwaslab/bd_common_data.py,sha256=-YlytsRU3YnwI23EV0U_pFWZ0_0yL23_RwTfBajEuPw,118
3
3
  gwaslab/bd_config.py,sha256=TP-r-DPhJD3XnRYZbw9bQHXaDIkiRgK8bG9HCt-UaLc,580
4
4
  gwaslab/bd_download.py,sha256=Nh09FP_d5kLsAyEF-WOYd7tty-ypvJv0PSTEO4JB2cc,15636
5
5
  gwaslab/bd_get_hapmap3.py,sha256=poqV3Ko56xhRFKdSK0ROwDQ71b27-9bMOQ0XO36To5c,2034
6
- gwaslab/g_Log.py,sha256=ICCzc2iP-toIRhXSnRufMqJrB6MtstJXk5qmC2yK6pY,821
6
+ gwaslab/g_Log.py,sha256=T9nt1yLM62h17zbWGCo6k8hqs-Gubq4F6jXipIRq9Rk,1079
7
7
  gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- gwaslab/g_Sumstats.py,sha256=9Qu5RFKgeZIkhHp-YwYZcECQOLV8dOGHvx2y9YVO3LA,33210
9
- gwaslab/g_SumstatsPair.py,sha256=eFFcL0foi7KJ2t7yf98WIyUMv-Kl6IrvSdv3FtqZmXs,5971
8
+ gwaslab/g_Sumstats.py,sha256=qX90zHIsVZI_8-9htpRq6lXWwz-twCnY4arnuatuiI8,28806
9
+ gwaslab/g_SumstatsPair.py,sha256=2_VYz58bLn1YIPvfr5J2CR_b4-DTXe9T3zZzYR-KsAo,6226
10
10
  gwaslab/g_SumstatsT.py,sha256=r3fAN-LsUIJhi7mhLH_4NBwHCOawVkbWULKY1vbmdZY,2113
11
- gwaslab/g_Sumstats_summary.py,sha256=Q69702tABxTVk6QIbqQ4k6eSujhXr_MVVQ5saOdEhlk,6367
11
+ gwaslab/g_Sumstats_summary.py,sha256=FECvvFXJVKaCX5dggBvvk9YvJ6AbdbcLfjltysX7wEE,6380
12
12
  gwaslab/g_meta.py,sha256=htWlgURWclm9R6UqFcX1a93WN27xny7lGUeyJZOtszQ,2583
13
13
  gwaslab/g_vchange_status.py,sha256=eX0jdIb6Spa07ZdpWNqUWqdVBWS0fuH2yrt4PDi3Res,1746
14
- gwaslab/g_version.py,sha256=nM7GpPDOdGl2i6-JJyZDrSlJfCCWoq9dFIfHrTcQTQg,1688
15
- gwaslab/hm_casting.py,sha256=w8Qz0IlFwmn4_uUc7aOccWZCfY_e19ZZr-iYgCu-SnQ,10350
16
- gwaslab/hm_harmonize_sumstats.py,sha256=l8kHWVJkveRfzeKjvh6Mx5Z_QLy52GSL_9euYnFtH-U,41692
17
- gwaslab/hm_rsid_to_chrpos.py,sha256=-pKhY654zS4uULW7FP4yGHNy3e9Wc2ujc1VLBaoUO5A,6564
18
- gwaslab/io_preformat_input.py,sha256=vusQAi9vR1Bn8K4Zf9KmDwuwqrhSaAZNZ4zHp6yfjxY,19625
14
+ gwaslab/g_version.py,sha256=SHIRseFVyyaxmK0jkGCnOLhWFFrwS1dxyvKNJpnH5bA,1688
15
+ gwaslab/hm_casting.py,sha256=6XDWyMfAUmjQ_xvO2wlfCnkKW6rO2JalJW2EUvYe9ek,11248
16
+ gwaslab/hm_harmonize_sumstats.py,sha256=cm2bi1H0O971mKz-NkRUJ9FlXNMHBN7RCfgOir3CeqU,47130
17
+ gwaslab/hm_rsid_to_chrpos.py,sha256=ODWREO0jPN0RAfNzL5fRzSRANfhiksOvUVPuEsFZQqA,6552
18
+ gwaslab/io_preformat_input.py,sha256=aU-Ci5nAa5ya6h8sG6I98uziCEX1hFRa5pb8Qhhz1zA,20072
19
19
  gwaslab/io_read_ldsc.py,sha256=mro3Vc3dQs6dQ2zsUaUYHOqJGIhJaNzxPeE3zsfO7dA,8659
20
20
  gwaslab/io_read_tabular.py,sha256=_gI0EA4CDecTPHTDp6hW2PesagYHHbBQvI_tW8U3Tc8,2366
21
- gwaslab/io_to_formats.py,sha256=tayh5qoxe9tn_g3mHTbfT3Jkz7kTo8BOPjpMtoMlfAY,21111
21
+ gwaslab/io_to_formats.py,sha256=cvnRoZd1o1__FTx5b8tVmZOf1BV1vhO_k09Jkm8yhRA,26221
22
22
  gwaslab/io_to_pickle.py,sha256=XmxhV5-38ED8aEyPYzsskv7HrxCyge9tHJ2F21QA8Ms,1824
23
- gwaslab/qc_check_datatype.py,sha256=ue_C7bjuL7NllOJNv8ReQESxpbXogleKGlw8ntWFi6Y,3440
24
- gwaslab/qc_fix_sumstats.py,sha256=XME1RzZqdoKc8bO7NLuyMu_t7gudt1tpMsNdiT6BIcU,87581
23
+ gwaslab/qc_check_datatype.py,sha256=WiZM5fa4skdFwAz8B6ZBRMatOjyHdlXhjpiPr29QtJE,3379
24
+ gwaslab/qc_fix_sumstats.py,sha256=DdI1j94OERblqvOI1ZLEj2fqeLCGK8JhVDBP84KSx9U,86557
25
25
  gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- gwaslab/util_ex_calculate_ldmatrix.py,sha256=hjFOZqGfQixTjMSxgVbB-JQwP0QcQMKfbhs-dsLT5Qw,12112
26
+ gwaslab/util_ex_calculate_ldmatrix.py,sha256=SVXjP7TkFmMNLyL89E6Q2RHT3bEgk47fcdWneL12xbw,13090
27
27
  gwaslab/util_ex_calculate_prs.py,sha256=uOcMRWujEYMYGuO-qGe3okQJYizXGvqDcomXlzLvln8,9049
28
- gwaslab/util_ex_gwascatalog.py,sha256=Y3CiBu03yrJ4SDubl3mOq62fIkbr7bZ1lwbhWEVWKmA,7576
29
- gwaslab/util_ex_ldproxyfinder.py,sha256=C705kiw673DaijrccJ8ifO2IXR9RHP8B7Jfp0_-7UWo,9398
28
+ gwaslab/util_ex_gwascatalog.py,sha256=PVjJog1y6XLKY8kbCHZQRYjwZG7s236D9AgKhaJDOUY,7583
29
+ gwaslab/util_ex_ldproxyfinder.py,sha256=MzeA1DKwwlQKCmv_7CM5zE1VDCDYdOnAmATv-svOu8c,9397
30
30
  gwaslab/util_ex_plink_filter.py,sha256=Ak09-tEIS_uq1OtiCmcDCXcEjzQHCEfp44AKkhgoOzY,1669
31
31
  gwaslab/util_ex_process_h5.py,sha256=1QzcQurnwedYFiF4ZaEOv0Wl41rBEUjS7yVcMWNIslE,2741
32
- gwaslab/util_ex_process_ref.py,sha256=vB5tDnlpnStLJq1QgxwhJQ1wRlQ8hy-yI5smm2wUjaA,16445
32
+ gwaslab/util_ex_process_ref.py,sha256=Y_nyWzhW1mOGSWvaTuNA3dJ8_QTbu0ETGnH73NOHI5g,16464
33
33
  gwaslab/util_ex_run_2samplemr.py,sha256=AvhpR_ihR052LBabR1wfEaBqfwCs88VW8Q2ijdKMfUs,9040
34
34
  gwaslab/util_ex_run_clumping.py,sha256=fE-PHeYjl8I08ycwCbJrQjF3wixMDYKNe4EASupEMpo,6816
35
- gwaslab/util_ex_run_coloc.py,sha256=Fx-bYWQyZVqvpJWUA97B8STBdoj462YXrC9-Zf9BMRM,5117
35
+ gwaslab/util_ex_run_coloc.py,sha256=TXk0zZz4KmVV_nm5RDnXycUBu0TA3xfmTRdwJb7g_ic,6198
36
36
  gwaslab/util_ex_run_susie.py,sha256=fxs5eCxA48j62dZlgTAPk8FMEIH7NK9cQxoy_s8RbdY,4252
37
37
  gwaslab/util_in_calculate_gc.py,sha256=HqyBBDorWoBlmD1i4K2Vr4vTTPqg5YLM8ktdvCpKe_c,2176
38
38
  gwaslab/util_in_calculate_power.py,sha256=Kk46GHKDcub6l1XTT-ZT5hrPmR8EUa_tS_LIPbLRvbU,10112
39
- gwaslab/util_in_convert_h2.py,sha256=azqGs9whhhukVDFruAwTobor4-LnGHWIOrhK_avRnWs,6468
39
+ gwaslab/util_in_convert_h2.py,sha256=Qfe74L9x6ijzrOM0tcPNDkAZ3yqEmzkOiuSIiigTxgg,6468
40
40
  gwaslab/util_in_correct_winnerscurse.py,sha256=o7CjUwLp4B_60yrntV76ESNaoPcl-HPOzSw9cYWzpW4,2050
41
- gwaslab/util_in_fill_data.py,sha256=vVtxWN-BRDPsGCIEIGJ9cWCayiWBYuOdV3kZyakhpFA,13847
42
- gwaslab/util_in_filter_value.py,sha256=rF2Nv1H-dxJZIIvw0r1tCB2xAFXt75qbpNJOpnEVffw,14647
43
- gwaslab/util_in_get_density.py,sha256=n4GFhuqyJ4HBepHJeMXVsddGRweFBaBQNueMg3hs4D8,3905
44
- gwaslab/util_in_get_sig.py,sha256=hrZrLb50h2V-PtPXkwJ2F_jc1piMJ2wJqWTqSq9cnEg,19805
41
+ gwaslab/util_in_fill_data.py,sha256=3WPgR7ZOCrODLkKl-3UuRTPHIp8iRfEbgQFlQyhdaDo,13881
42
+ gwaslab/util_in_filter_value.py,sha256=aIwOgJgjchIJhXq7Gl5tQYppiv0RwP_gyr7GTcw9YNo,18129
43
+ gwaslab/util_in_get_density.py,sha256=isfdOTXnjC95meQZuQIo6fURlkABpsh3Y1rrUPhejvA,3893
44
+ gwaslab/util_in_get_sig.py,sha256=6UWE7ornAm-PFG3_eRpf2VuyrBgk4VElKLN7OBNayrw,21308
45
45
  gwaslab/viz_aux_annotate_plot.py,sha256=BKwvyXydKjgFo2w2ZCwxtxRLGT-g5e6eayhkSje3Lfc,32124
46
- gwaslab/viz_aux_quickfix.py,sha256=AP7Yg1TQ0q810BKRCM5jLXAjPSFehs2vxY2ocIFr7Ag,17904
47
- gwaslab/viz_aux_reposition_text.py,sha256=N0jMQSAnFPFWwx9mUFTcVtntdA56I_3vB332jtpezU4,4233
48
- gwaslab/viz_aux_save_figure.py,sha256=KfpYuSNxYv0EvcoR5n2AWjnGnJzFrYfyoGfJd71NYMQ,2083
49
- gwaslab/viz_plot_compare_af.py,sha256=vVypmnF-l6JzXyi5HPYFr-GM-OmNQGvip8oTCBvvHsk,5532
46
+ gwaslab/viz_aux_quickfix.py,sha256=vHq4p8wntcimow2Wh75cptLiorAATGoSBcJQ47UOL74,18261
47
+ gwaslab/viz_aux_reposition_text.py,sha256=tFs4fK4E4TQdzWfxQIy5QO6d44x-N0PaOIHxZDCzt0o,4308
48
+ gwaslab/viz_aux_save_figure.py,sha256=edW0GUPcyG4MIIF55OqO45h087OnbVLbXMG35TqjqA8,2218
49
+ gwaslab/viz_plot_compare_af.py,sha256=VpH45FGIRoRCz1X3nXCXaD6yshvqI1EuwgbK4m0iAhM,5505
50
50
  gwaslab/viz_plot_compare_effect.py,sha256=iUlp6tUS7OSlffgGyUIH4tPXQB_BK19OQZSo7xhToRA,49817
51
51
  gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
52
52
  gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
53
- gwaslab/viz_plot_miamiplot2.py,sha256=aJcA5eEY44VuGMZMBKM6aPE1D_D6w2O2Jmw5QwUoyik,15371
54
- gwaslab/viz_plot_mqqplot.py,sha256=nMorIAlepN2IpeWtCfinIzsEfLdjIBCvRSE12b-Rk2U,59112
55
- gwaslab/viz_plot_qqplot.py,sha256=XVnNbX5oXk2yvXT4uSuGtWW1fbr_FzAlWNjRW_bWmyU,7012
56
- gwaslab/viz_plot_regionalplot.py,sha256=oTY-5eAnPpKyiKBbgXMer2nJHwWT3HBQokxWMit_0Gs,37404
53
+ gwaslab/viz_plot_miamiplot2.py,sha256=CZojciiQqVu_36Fiwzny0HubHoLVUef7MOGQjJOlFrY,15852
54
+ gwaslab/viz_plot_mqqplot.py,sha256=OUOZmy4w9xxbNnHEVwuCNrpDfF7BRkPr6llFl3mU31g,61222
55
+ gwaslab/viz_plot_qqplot.py,sha256=vsXiY1wZ1TAr6tlCg0fma0RfghDb-4SGXhwqdO89QyQ,7259
56
+ gwaslab/viz_plot_regionalplot.py,sha256=LmSLShO_WJMxdUeNA7BIKAgclCzcUbLz1VTHgr6qPbc,37434
57
57
  gwaslab/viz_plot_rg_heatmap.py,sha256=nibSCUnY_ZskCpJx7ppOgyqOuXBaWy6r7c_1McrQmZ0,13877
58
58
  gwaslab/viz_plot_stackedregional.py,sha256=Ne7ncUN4iwmYKaDR8ZXeAFYPw29o_M2JzAnZRkyeMA0,9894
59
- gwaslab/viz_plot_trumpetplot.py,sha256=YAcLDgqPr9JK0vKo_ZDtfKgkhHpQVOxeg2UnbQ2HsA8,37002
60
- gwaslab/data/formatbook.json,sha256=oZSIk4-TX1_ODFwArhAeGB4f3N_c5HNOqQ9R4NceLL0,38181
59
+ gwaslab/viz_plot_trumpetplot.py,sha256=-W6-qvpg_bdPsE5GOnwwJ4WRY9dLSu4XCdm1m3SpiEo,37237
60
+ gwaslab/data/formatbook.json,sha256=N2nJs80HH98Rsu9FxaSvIQO9J5yIV97WEtAKjRqYwiY,38207
61
61
  gwaslab/data/reference.json,sha256=k8AvvgDsuLxzv-NCJHWvTUZ5q_DLAFxs1Th3jtL313k,11441
62
62
  gwaslab/data/chrx_par/chrx_par_hg19.bed.gz,sha256=LocZg_ozhZjQiIpgWCO4EYCW9xgkEKpRy1m-YdIpzQs,83
63
63
  gwaslab/data/chrx_par/chrx_par_hg38.bed.gz,sha256=VFW11MnQVC-Iu-ZGvUDcEhVpb-HVRsVTg-W-GNJyxP4,82
@@ -65,8 +65,8 @@ gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW
65
65
  gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
66
66
  gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
67
67
  gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
68
- gwaslab-3.4.37.dist-info/LICENSE,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
69
- gwaslab-3.4.37.dist-info/METADATA,sha256=f_nK22RXPBbzF69Zhhx4eIQVIYhsHxZMmZnh5Jkb-wM,6806
70
- gwaslab-3.4.37.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
71
- gwaslab-3.4.37.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
72
- gwaslab-3.4.37.dist-info/RECORD,,
68
+ gwaslab-3.4.38.dist-info/LICENSE,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
69
+ gwaslab-3.4.38.dist-info/METADATA,sha256=Y8WW-j1IjW151zNScfgaQq2HQ46TnPS-wLonkGtmP14,6804
70
+ gwaslab-3.4.38.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
71
+ gwaslab-3.4.38.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
72
+ gwaslab-3.4.38.dist-info/RECORD,,