gwaslab 3.4.36__py3-none-any.whl → 3.4.38__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gwaslab might be problematic. Click here for more details.
- gwaslab/__init__.py +1 -1
- gwaslab/data/formatbook.json +722 -721
- gwaslab/g_Log.py +8 -0
- gwaslab/g_Sumstats.py +80 -178
- gwaslab/g_SumstatsPair.py +6 -2
- gwaslab/g_Sumstats_summary.py +3 -3
- gwaslab/g_meta.py +13 -3
- gwaslab/g_version.py +2 -2
- gwaslab/hm_casting.py +29 -15
- gwaslab/hm_harmonize_sumstats.py +312 -159
- gwaslab/hm_rsid_to_chrpos.py +1 -1
- gwaslab/io_preformat_input.py +46 -37
- gwaslab/io_to_formats.py +428 -295
- gwaslab/qc_check_datatype.py +15 -1
- gwaslab/qc_fix_sumstats.py +956 -719
- gwaslab/util_ex_calculate_ldmatrix.py +29 -11
- gwaslab/util_ex_gwascatalog.py +1 -1
- gwaslab/util_ex_ldproxyfinder.py +1 -1
- gwaslab/util_ex_process_h5.py +26 -17
- gwaslab/util_ex_process_ref.py +3 -3
- gwaslab/util_ex_run_coloc.py +26 -4
- gwaslab/util_in_convert_h2.py +1 -1
- gwaslab/util_in_fill_data.py +44 -5
- gwaslab/util_in_filter_value.py +122 -34
- gwaslab/util_in_get_density.py +2 -2
- gwaslab/util_in_get_sig.py +41 -9
- gwaslab/viz_aux_quickfix.py +26 -21
- gwaslab/viz_aux_reposition_text.py +7 -4
- gwaslab/viz_aux_save_figure.py +6 -5
- gwaslab/viz_plot_compare_af.py +5 -5
- gwaslab/viz_plot_compare_effect.py +22 -5
- gwaslab/viz_plot_miamiplot2.py +28 -20
- gwaslab/viz_plot_mqqplot.py +214 -98
- gwaslab/viz_plot_qqplot.py +11 -8
- gwaslab/viz_plot_regionalplot.py +16 -9
- gwaslab/viz_plot_trumpetplot.py +15 -6
- {gwaslab-3.4.36.dist-info → gwaslab-3.4.38.dist-info}/METADATA +3 -3
- gwaslab-3.4.38.dist-info/RECORD +72 -0
- gwaslab-3.4.36.dist-info/RECORD +0 -72
- {gwaslab-3.4.36.dist-info → gwaslab-3.4.38.dist-info}/LICENSE +0 -0
- {gwaslab-3.4.36.dist-info → gwaslab-3.4.38.dist-info}/WHEEL +0 -0
- {gwaslab-3.4.36.dist-info → gwaslab-3.4.38.dist-info}/top_level.txt +0 -0
gwaslab/viz_plot_qqplot.py
CHANGED
|
@@ -45,7 +45,7 @@ def _plot_qq(
|
|
|
45
45
|
|
|
46
46
|
# QQ plot #########################################################################################################
|
|
47
47
|
# ax2 qqplot
|
|
48
|
-
|
|
48
|
+
log.write("Start to create QQ plot with "+str(len(sumstats))+" variants:",verbose=verbose )
|
|
49
49
|
|
|
50
50
|
# plotting qq plots using processed data after cut and skip
|
|
51
51
|
|
|
@@ -59,6 +59,7 @@ def _plot_qq(
|
|
|
59
59
|
upper_bound_p = np.power(10.0, -expected_min_mlog10p)
|
|
60
60
|
|
|
61
61
|
if stratified is False:
|
|
62
|
+
log.write(" -Plotting all variants...",verbose=verbose)
|
|
62
63
|
# sort x,y for qq plot
|
|
63
64
|
# high to low
|
|
64
65
|
observed = p_toplot.sort_values(ascending=False)
|
|
@@ -68,13 +69,13 @@ def _plot_qq(
|
|
|
68
69
|
|
|
69
70
|
expected_all = -np.log10(np.linspace(minit,upper_bound_p,len(p_toplot_raw)))[:len(observed)]
|
|
70
71
|
|
|
71
|
-
|
|
72
|
+
log.write(" -Expected range of P: (0,{})".format(upper_bound_p),verbose=verbose)
|
|
72
73
|
#p_toplot = sumstats["scaled_P"]
|
|
73
74
|
ax2.scatter(expected_all,observed,s=marker_size[1],color=colors[0],**qq_scatter_args)
|
|
74
75
|
|
|
75
76
|
else:
|
|
76
77
|
# stratified qq plot
|
|
77
|
-
|
|
78
|
+
log.write(" -Plotting variants stratified by MAF...",verbose=verbose)
|
|
78
79
|
observed = p_toplot.sort_values(ascending=False)
|
|
79
80
|
expected_all = -np.log10(np.linspace(minit,upper_bound_p,len(p_toplot_raw)))[:len(observed)]
|
|
80
81
|
|
|
@@ -115,15 +116,15 @@ def _plot_qq(
|
|
|
115
116
|
|
|
116
117
|
if expected_min_mlog10p!=0:
|
|
117
118
|
level = 1 - np.power(10.0,-np.nanmedian(expected_all))
|
|
118
|
-
|
|
119
|
+
log.write(" -Level for calculating lambda GC : {}".format(1 - level),verbose=verbose)
|
|
119
120
|
|
|
120
|
-
if verbose and not include_chrXYMT : log.write(" -Excluding chrX,Y, MT from calculation of lambda GC.")
|
|
121
|
+
if verbose and not include_chrXYMT : log.write(" -Excluding chrX,Y, MT from calculation of lambda GC.",verbose=verbose)
|
|
121
122
|
lambdagc = lambdaGC(p_toplot_raw,
|
|
122
123
|
mode="MLOG10P",
|
|
123
124
|
level=level,
|
|
124
125
|
include_chrXYMT=include_chrXYMT,
|
|
125
126
|
log=log,
|
|
126
|
-
verbose=
|
|
127
|
+
verbose=verbose)
|
|
127
128
|
|
|
128
129
|
# annotate lambda gc to qq plot
|
|
129
130
|
ax2.text(0.10, 1.03,"$\\lambda_{GC}$ = "+"{:.4f}".format(lambdagc),
|
|
@@ -147,7 +148,9 @@ def _plot_qq(
|
|
|
147
148
|
font_family=font_family,
|
|
148
149
|
ylabels=ylabels,
|
|
149
150
|
ytick3=ytick3,
|
|
150
|
-
ylabels_converted=ylabels_converted
|
|
151
|
+
ylabels_converted=ylabels_converted,
|
|
152
|
+
log=log,
|
|
153
|
+
verbose=verbose
|
|
151
154
|
)
|
|
152
155
|
|
|
153
156
|
#if cut == 0:
|
|
@@ -181,7 +184,7 @@ def _plot_qq(
|
|
|
181
184
|
if qtitle:
|
|
182
185
|
ax2.set_title(qtitle,fontsize=title_fontsize,pad=10,family=font_family)
|
|
183
186
|
|
|
184
|
-
|
|
187
|
+
log.write("Finished creating QQ plot successfully!",verbose=verbose)
|
|
185
188
|
|
|
186
189
|
# Creating QQ plot Finished #############################################################################################
|
|
187
190
|
return ax2
|
gwaslab/viz_plot_regionalplot.py
CHANGED
|
@@ -64,6 +64,7 @@ def _plot_regional(
|
|
|
64
64
|
region_recombination = True,
|
|
65
65
|
region_protein_coding=True,
|
|
66
66
|
region_flank_factor = 0.05,
|
|
67
|
+
track_font_family="Arial",
|
|
67
68
|
taf=[4,0,0.95,1,1],
|
|
68
69
|
# track_n, track_n_offset,font_ratio,exon_ratio,text_offset
|
|
69
70
|
tabix=None,
|
|
@@ -104,21 +105,25 @@ def _plot_regional(
|
|
|
104
105
|
|
|
105
106
|
if (vcf_path is not None) and region_ld_legend:
|
|
106
107
|
if region_ref_second is None:
|
|
107
|
-
ax1 = _add_ld_legend(sumstats=sumstats,
|
|
108
|
+
ax1, cbar = _add_ld_legend(sumstats=sumstats,
|
|
108
109
|
ax1=ax1,
|
|
109
110
|
region_ld_threshold=region_ld_threshold,
|
|
110
111
|
region_ld_colors=region_ld_colors)
|
|
111
112
|
else:
|
|
112
|
-
|
|
113
|
+
|
|
114
|
+
ax1, cbar1 = _add_ld_legend(sumstats=sumstats,
|
|
113
115
|
ax1=ax1,
|
|
114
116
|
region_ld_threshold=region_ld_threshold,
|
|
115
117
|
region_ld_colors=region_ld_colors1,
|
|
116
118
|
position=1)
|
|
117
|
-
ax1 = _add_ld_legend(sumstats=sumstats,
|
|
119
|
+
ax1, cbar2 = _add_ld_legend(sumstats=sumstats,
|
|
118
120
|
ax1=ax1,
|
|
119
121
|
region_ld_threshold=region_ld_threshold,
|
|
120
122
|
region_ld_colors=region_ld_colors2,
|
|
121
123
|
position=2)
|
|
124
|
+
cbar = [cbar1, cbar2]
|
|
125
|
+
else:
|
|
126
|
+
cbar=None
|
|
122
127
|
if region_title is not None:
|
|
123
128
|
ax1 = _add_region_title(region_title, ax1=ax1,region_title_args=region_title_args )
|
|
124
129
|
## recombinnation rate ##################################################
|
|
@@ -176,6 +181,7 @@ def _plot_regional(
|
|
|
176
181
|
gene_track_start_i=gene_track_start_i,
|
|
177
182
|
gtf_chr_dict=gtf_chr_dict,
|
|
178
183
|
gtf_gene_name=gtf_gene_name,
|
|
184
|
+
track_font_family=track_font_family,
|
|
179
185
|
taf=taf,
|
|
180
186
|
build=build,
|
|
181
187
|
verbose=verbose,
|
|
@@ -231,7 +237,7 @@ def _plot_regional(
|
|
|
231
237
|
avoid_points=False,
|
|
232
238
|
lim =1000)
|
|
233
239
|
|
|
234
|
-
return ax1, ax3, lead_snp_i, lead_snp_i2
|
|
240
|
+
return ax1, ax3, ax4, cbar, lead_snp_i, lead_snp_i2
|
|
235
241
|
|
|
236
242
|
# + ###########################################################################################################################################################################
|
|
237
243
|
def _get_lead_id(sumstats=None, region_ref=None, log=None):
|
|
@@ -336,7 +342,7 @@ def _add_ld_legend(sumstats, ax1, region_ld_threshold, region_ld_colors,position
|
|
|
336
342
|
facecolor='white',
|
|
337
343
|
zorder=999998)
|
|
338
344
|
ax1.add_patch(rect)
|
|
339
|
-
return ax1
|
|
345
|
+
return ax1, cbar
|
|
340
346
|
|
|
341
347
|
# -############################################################################################################################################################################
|
|
342
348
|
def _plot_recombination_rate(sumstats,pos, region, ax1, rr_path, rr_chr_dict, rr_header_dict, build,rr_lim,rr_ylabel=True):
|
|
@@ -385,6 +391,7 @@ def _plot_gene_track(
|
|
|
385
391
|
region_ld_colors2,
|
|
386
392
|
gene_track_start_i,
|
|
387
393
|
gtf_chr_dict,gtf_gene_name,
|
|
394
|
+
track_font_family,
|
|
388
395
|
taf,
|
|
389
396
|
build,
|
|
390
397
|
verbose=True,
|
|
@@ -452,15 +459,15 @@ def _plot_gene_track(
|
|
|
452
459
|
if row["end"] >= region[2]:
|
|
453
460
|
#right side
|
|
454
461
|
texts_to_adjust_right.append(ax3.text(x=gene_track_start_i+region[2],
|
|
455
|
-
y=row["stack"]*2+taf[4],s=gene_anno,ha="right",va="center",color="black",style='italic', size=font_size_in_points))
|
|
462
|
+
y=row["stack"]*2+taf[4],s=gene_anno,ha="right",va="center",color="black",style='italic', size=font_size_in_points,family=track_font_family))
|
|
456
463
|
|
|
457
464
|
elif row["start"] <= region[1] :
|
|
458
465
|
#left side
|
|
459
466
|
texts_to_adjust_left.append(ax3.text(x=gene_track_start_i+region[1],
|
|
460
|
-
y=row["stack"]*2+taf[4],s=gene_anno,ha="left",va="center",color="black",style='italic', size=font_size_in_points))
|
|
467
|
+
y=row["stack"]*2+taf[4],s=gene_anno,ha="left",va="center",color="black",style='italic', size=font_size_in_points,family=track_font_family))
|
|
461
468
|
else:
|
|
462
469
|
texts_to_adjust_middle.append(ax3.text(x=(gene_track_start_i+row["start"]+gene_track_start_i+row["end"])/2,
|
|
463
|
-
y=row["stack"]*2+taf[4],s=gene_anno,ha="center",va="center",color="black",style='italic',size=font_size_in_points))
|
|
470
|
+
y=row["stack"]*2+taf[4],s=gene_anno,ha="center",va="center",color="black",style='italic',size=font_size_in_points,family=track_font_family))
|
|
464
471
|
|
|
465
472
|
# plot exons
|
|
466
473
|
for index,row in exons.iterrows():
|
|
@@ -535,7 +542,7 @@ def process_vcf(sumstats, vcf_path, region,region_ref, region_ref_second, log, v
|
|
|
535
542
|
# no position match
|
|
536
543
|
return None
|
|
537
544
|
if verbose: log.write(" -Matching variants using POS, NEA, EA ...")
|
|
538
|
-
sumstats["REFINDEX"] = sumstats
|
|
545
|
+
sumstats["REFINDEX"] = sumstats[[pos,nea,ea]].apply(lambda x: match_varaint(x),axis=1)
|
|
539
546
|
#############################################################################################
|
|
540
547
|
#sumstats["REFINDEX"] = sumstats[pos].apply(lambda x: np.where(ref_genotype["variants/POS"] == x )[0][0] if np.any(ref_genotype["variants/POS"] == x) else None)
|
|
541
548
|
|
gwaslab/viz_plot_trumpetplot.py
CHANGED
|
@@ -66,7 +66,7 @@ def plottrumpet(mysumstats,
|
|
|
66
66
|
anno_source = "ensembl",
|
|
67
67
|
anno_max_iter=100,
|
|
68
68
|
arm_scale=1,
|
|
69
|
-
repel_force=0.
|
|
69
|
+
repel_force=0.01,
|
|
70
70
|
ylabel="Effect size",
|
|
71
71
|
xlabel="Minor allele frequency",
|
|
72
72
|
xticks = None,
|
|
@@ -99,7 +99,7 @@ def plottrumpet(mysumstats,
|
|
|
99
99
|
xticks = [0,0.01,0.05,0.1,0.2,0.5]
|
|
100
100
|
xticklabels = xticks
|
|
101
101
|
if figargs is None:
|
|
102
|
-
figargs={"figsize":(10,
|
|
102
|
+
figargs={"figsize":(10,8)}
|
|
103
103
|
if scatter_args is None:
|
|
104
104
|
scatter_args ={}
|
|
105
105
|
if hue is not None:
|
|
@@ -307,6 +307,7 @@ def plottrumpet(mysumstats,
|
|
|
307
307
|
|
|
308
308
|
if ylim is not None:
|
|
309
309
|
ax.set_ylim(ylim)
|
|
310
|
+
|
|
310
311
|
if yticks is not None:
|
|
311
312
|
ax.set_yticks(yticks, yticklabels)
|
|
312
313
|
|
|
@@ -337,8 +338,8 @@ def plottrumpet(mysumstats,
|
|
|
337
338
|
texts_d=[]
|
|
338
339
|
|
|
339
340
|
if len(variants_toanno)>0:
|
|
340
|
-
|
|
341
|
-
maxy = max(variants_toanno[beta].abs().max(),1.5)
|
|
341
|
+
maxy = variants_toanno[beta].abs().max()
|
|
342
|
+
#maxy = max(variants_toanno[beta].abs().max(),1.5)
|
|
342
343
|
variants_toanno["ADJUSTED_i"] = np.nan
|
|
343
344
|
y_span = 0.5
|
|
344
345
|
|
|
@@ -348,6 +349,9 @@ def plottrumpet(mysumstats,
|
|
|
348
349
|
variants_toanno = variants_toanno.sort_values(by=maf, key= np.abs, ascending = True)
|
|
349
350
|
|
|
350
351
|
if anno_style == "expand":
|
|
352
|
+
|
|
353
|
+
min_factor=None
|
|
354
|
+
|
|
351
355
|
if len(variants_toanno.loc[variants_toanno[beta]>0, "ADJUSTED_i"])>1:
|
|
352
356
|
variants_toanno.loc[variants_toanno[beta]>0, "ADJUSTED_i"] = adjust_text_position(variants_toanno.loc[variants_toanno[beta]>0,maf].values.copy(),
|
|
353
357
|
y_span,
|
|
@@ -355,7 +359,7 @@ def plottrumpet(mysumstats,
|
|
|
355
359
|
max_iter=anno_max_iter,
|
|
356
360
|
log=log,
|
|
357
361
|
amode=xscale,
|
|
358
|
-
verbose=verbose)
|
|
362
|
+
verbose=verbose,min_factor=min_factor)
|
|
359
363
|
|
|
360
364
|
if len(variants_toanno.loc[variants_toanno[beta]<0, "ADJUSTED_i"])>1:
|
|
361
365
|
variants_toanno.loc[variants_toanno[beta]<0, "ADJUSTED_i"] = adjust_text_position(variants_toanno.loc[variants_toanno[beta]<0,maf].values.copy(),
|
|
@@ -364,10 +368,12 @@ def plottrumpet(mysumstats,
|
|
|
364
368
|
max_iter=anno_max_iter,
|
|
365
369
|
log=log,
|
|
366
370
|
amode=xscale,
|
|
367
|
-
verbose=verbose)
|
|
371
|
+
verbose=verbose,min_factor=min_factor)
|
|
368
372
|
|
|
369
373
|
|
|
370
374
|
for variants_toanno_half in [variants_toanno.loc[variants_toanno[beta]<0,:], variants_toanno.loc[variants_toanno[beta]>0,:]]:
|
|
375
|
+
if len(variants_toanno_half)<1:
|
|
376
|
+
continue
|
|
371
377
|
last_pos = min(variants_toanno_half[maf])/2
|
|
372
378
|
for index, row in variants_toanno_half.iterrows():
|
|
373
379
|
|
|
@@ -395,6 +401,7 @@ def plottrumpet(mysumstats,
|
|
|
395
401
|
|
|
396
402
|
if anno_style=="tight":
|
|
397
403
|
texts_d.append(ax.text(row[maf], row[beta], row[anno]))
|
|
404
|
+
|
|
398
405
|
if anno_style=="tight":
|
|
399
406
|
adjust_text(texts_d,
|
|
400
407
|
autoalign =True,
|
|
@@ -404,6 +411,8 @@ def plottrumpet(mysumstats,
|
|
|
404
411
|
expand_points=(0.5,0.5),
|
|
405
412
|
force_objects=(0.5,0.5),
|
|
406
413
|
ax=ax)
|
|
414
|
+
|
|
415
|
+
|
|
407
416
|
############ Annotation ##################################################################################################
|
|
408
417
|
if mode=="q":
|
|
409
418
|
save_figure(fig, save, keyword="trumpet_q",save_args=save_args, log=log, verbose=verbose)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: gwaslab
|
|
3
|
-
Version: 3.4.
|
|
3
|
+
Version: 3.4.38
|
|
4
4
|
Summary: A collection of handy tools for GWAS SumStats
|
|
5
5
|
Author-email: Yunye <yunye@gwaslab.com>
|
|
6
6
|
Project-URL: Homepage, https://cloufield.github.io/gwaslab/
|
|
@@ -8,13 +8,13 @@ Project-URL: Github, https://github.com/Cloufield/gwaslab
|
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: License :: OSI Approved :: MIT License
|
|
10
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: <=3.10,>=3.
|
|
11
|
+
Requires-Python: <=3.10,>=3.9
|
|
12
12
|
Description-Content-Type: text/markdown
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
Requires-Dist: pandas !=1.5,>=1.3
|
|
15
15
|
Requires-Dist: numpy >=1.21.2
|
|
16
16
|
Requires-Dist: matplotlib !=3.7.2,>=3.5
|
|
17
|
-
Requires-Dist: seaborn >=0.
|
|
17
|
+
Requires-Dist: seaborn >=0.12
|
|
18
18
|
Requires-Dist: scipy >=1.12
|
|
19
19
|
Requires-Dist: pySAM <0.20,>=0.18.1
|
|
20
20
|
Requires-Dist: Biopython >=1.79
|
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
gwaslab/__init__.py,sha256=dFnrh4L620F5JirsSF98SmkuligA-fybIGdBF6r9Ims,2386
|
|
2
|
+
gwaslab/bd_common_data.py,sha256=-YlytsRU3YnwI23EV0U_pFWZ0_0yL23_RwTfBajEuPw,11844
|
|
3
|
+
gwaslab/bd_config.py,sha256=TP-r-DPhJD3XnRYZbw9bQHXaDIkiRgK8bG9HCt-UaLc,580
|
|
4
|
+
gwaslab/bd_download.py,sha256=Nh09FP_d5kLsAyEF-WOYd7tty-ypvJv0PSTEO4JB2cc,15636
|
|
5
|
+
gwaslab/bd_get_hapmap3.py,sha256=poqV3Ko56xhRFKdSK0ROwDQ71b27-9bMOQ0XO36To5c,2034
|
|
6
|
+
gwaslab/g_Log.py,sha256=T9nt1yLM62h17zbWGCo6k8hqs-Gubq4F6jXipIRq9Rk,1079
|
|
7
|
+
gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
|
+
gwaslab/g_Sumstats.py,sha256=qX90zHIsVZI_8-9htpRq6lXWwz-twCnY4arnuatuiI8,28806
|
|
9
|
+
gwaslab/g_SumstatsPair.py,sha256=2_VYz58bLn1YIPvfr5J2CR_b4-DTXe9T3zZzYR-KsAo,6226
|
|
10
|
+
gwaslab/g_SumstatsT.py,sha256=r3fAN-LsUIJhi7mhLH_4NBwHCOawVkbWULKY1vbmdZY,2113
|
|
11
|
+
gwaslab/g_Sumstats_summary.py,sha256=FECvvFXJVKaCX5dggBvvk9YvJ6AbdbcLfjltysX7wEE,6380
|
|
12
|
+
gwaslab/g_meta.py,sha256=htWlgURWclm9R6UqFcX1a93WN27xny7lGUeyJZOtszQ,2583
|
|
13
|
+
gwaslab/g_vchange_status.py,sha256=eX0jdIb6Spa07ZdpWNqUWqdVBWS0fuH2yrt4PDi3Res,1746
|
|
14
|
+
gwaslab/g_version.py,sha256=SHIRseFVyyaxmK0jkGCnOLhWFFrwS1dxyvKNJpnH5bA,1688
|
|
15
|
+
gwaslab/hm_casting.py,sha256=6XDWyMfAUmjQ_xvO2wlfCnkKW6rO2JalJW2EUvYe9ek,11248
|
|
16
|
+
gwaslab/hm_harmonize_sumstats.py,sha256=cm2bi1H0O971mKz-NkRUJ9FlXNMHBN7RCfgOir3CeqU,47130
|
|
17
|
+
gwaslab/hm_rsid_to_chrpos.py,sha256=ODWREO0jPN0RAfNzL5fRzSRANfhiksOvUVPuEsFZQqA,6552
|
|
18
|
+
gwaslab/io_preformat_input.py,sha256=aU-Ci5nAa5ya6h8sG6I98uziCEX1hFRa5pb8Qhhz1zA,20072
|
|
19
|
+
gwaslab/io_read_ldsc.py,sha256=mro3Vc3dQs6dQ2zsUaUYHOqJGIhJaNzxPeE3zsfO7dA,8659
|
|
20
|
+
gwaslab/io_read_tabular.py,sha256=_gI0EA4CDecTPHTDp6hW2PesagYHHbBQvI_tW8U3Tc8,2366
|
|
21
|
+
gwaslab/io_to_formats.py,sha256=cvnRoZd1o1__FTx5b8tVmZOf1BV1vhO_k09Jkm8yhRA,26221
|
|
22
|
+
gwaslab/io_to_pickle.py,sha256=XmxhV5-38ED8aEyPYzsskv7HrxCyge9tHJ2F21QA8Ms,1824
|
|
23
|
+
gwaslab/qc_check_datatype.py,sha256=WiZM5fa4skdFwAz8B6ZBRMatOjyHdlXhjpiPr29QtJE,3379
|
|
24
|
+
gwaslab/qc_fix_sumstats.py,sha256=DdI1j94OERblqvOI1ZLEj2fqeLCGK8JhVDBP84KSx9U,86557
|
|
25
|
+
gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
26
|
+
gwaslab/util_ex_calculate_ldmatrix.py,sha256=SVXjP7TkFmMNLyL89E6Q2RHT3bEgk47fcdWneL12xbw,13090
|
|
27
|
+
gwaslab/util_ex_calculate_prs.py,sha256=uOcMRWujEYMYGuO-qGe3okQJYizXGvqDcomXlzLvln8,9049
|
|
28
|
+
gwaslab/util_ex_gwascatalog.py,sha256=PVjJog1y6XLKY8kbCHZQRYjwZG7s236D9AgKhaJDOUY,7583
|
|
29
|
+
gwaslab/util_ex_ldproxyfinder.py,sha256=MzeA1DKwwlQKCmv_7CM5zE1VDCDYdOnAmATv-svOu8c,9397
|
|
30
|
+
gwaslab/util_ex_plink_filter.py,sha256=Ak09-tEIS_uq1OtiCmcDCXcEjzQHCEfp44AKkhgoOzY,1669
|
|
31
|
+
gwaslab/util_ex_process_h5.py,sha256=1QzcQurnwedYFiF4ZaEOv0Wl41rBEUjS7yVcMWNIslE,2741
|
|
32
|
+
gwaslab/util_ex_process_ref.py,sha256=Y_nyWzhW1mOGSWvaTuNA3dJ8_QTbu0ETGnH73NOHI5g,16464
|
|
33
|
+
gwaslab/util_ex_run_2samplemr.py,sha256=AvhpR_ihR052LBabR1wfEaBqfwCs88VW8Q2ijdKMfUs,9040
|
|
34
|
+
gwaslab/util_ex_run_clumping.py,sha256=fE-PHeYjl8I08ycwCbJrQjF3wixMDYKNe4EASupEMpo,6816
|
|
35
|
+
gwaslab/util_ex_run_coloc.py,sha256=TXk0zZz4KmVV_nm5RDnXycUBu0TA3xfmTRdwJb7g_ic,6198
|
|
36
|
+
gwaslab/util_ex_run_susie.py,sha256=fxs5eCxA48j62dZlgTAPk8FMEIH7NK9cQxoy_s8RbdY,4252
|
|
37
|
+
gwaslab/util_in_calculate_gc.py,sha256=HqyBBDorWoBlmD1i4K2Vr4vTTPqg5YLM8ktdvCpKe_c,2176
|
|
38
|
+
gwaslab/util_in_calculate_power.py,sha256=Kk46GHKDcub6l1XTT-ZT5hrPmR8EUa_tS_LIPbLRvbU,10112
|
|
39
|
+
gwaslab/util_in_convert_h2.py,sha256=Qfe74L9x6ijzrOM0tcPNDkAZ3yqEmzkOiuSIiigTxgg,6468
|
|
40
|
+
gwaslab/util_in_correct_winnerscurse.py,sha256=o7CjUwLp4B_60yrntV76ESNaoPcl-HPOzSw9cYWzpW4,2050
|
|
41
|
+
gwaslab/util_in_fill_data.py,sha256=3WPgR7ZOCrODLkKl-3UuRTPHIp8iRfEbgQFlQyhdaDo,13881
|
|
42
|
+
gwaslab/util_in_filter_value.py,sha256=aIwOgJgjchIJhXq7Gl5tQYppiv0RwP_gyr7GTcw9YNo,18129
|
|
43
|
+
gwaslab/util_in_get_density.py,sha256=isfdOTXnjC95meQZuQIo6fURlkABpsh3Y1rrUPhejvA,3893
|
|
44
|
+
gwaslab/util_in_get_sig.py,sha256=6UWE7ornAm-PFG3_eRpf2VuyrBgk4VElKLN7OBNayrw,21308
|
|
45
|
+
gwaslab/viz_aux_annotate_plot.py,sha256=BKwvyXydKjgFo2w2ZCwxtxRLGT-g5e6eayhkSje3Lfc,32124
|
|
46
|
+
gwaslab/viz_aux_quickfix.py,sha256=vHq4p8wntcimow2Wh75cptLiorAATGoSBcJQ47UOL74,18261
|
|
47
|
+
gwaslab/viz_aux_reposition_text.py,sha256=tFs4fK4E4TQdzWfxQIy5QO6d44x-N0PaOIHxZDCzt0o,4308
|
|
48
|
+
gwaslab/viz_aux_save_figure.py,sha256=edW0GUPcyG4MIIF55OqO45h087OnbVLbXMG35TqjqA8,2218
|
|
49
|
+
gwaslab/viz_plot_compare_af.py,sha256=VpH45FGIRoRCz1X3nXCXaD6yshvqI1EuwgbK4m0iAhM,5505
|
|
50
|
+
gwaslab/viz_plot_compare_effect.py,sha256=iUlp6tUS7OSlffgGyUIH4tPXQB_BK19OQZSo7xhToRA,49817
|
|
51
|
+
gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
|
|
52
|
+
gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
|
|
53
|
+
gwaslab/viz_plot_miamiplot2.py,sha256=CZojciiQqVu_36Fiwzny0HubHoLVUef7MOGQjJOlFrY,15852
|
|
54
|
+
gwaslab/viz_plot_mqqplot.py,sha256=OUOZmy4w9xxbNnHEVwuCNrpDfF7BRkPr6llFl3mU31g,61222
|
|
55
|
+
gwaslab/viz_plot_qqplot.py,sha256=vsXiY1wZ1TAr6tlCg0fma0RfghDb-4SGXhwqdO89QyQ,7259
|
|
56
|
+
gwaslab/viz_plot_regionalplot.py,sha256=LmSLShO_WJMxdUeNA7BIKAgclCzcUbLz1VTHgr6qPbc,37434
|
|
57
|
+
gwaslab/viz_plot_rg_heatmap.py,sha256=nibSCUnY_ZskCpJx7ppOgyqOuXBaWy6r7c_1McrQmZ0,13877
|
|
58
|
+
gwaslab/viz_plot_stackedregional.py,sha256=Ne7ncUN4iwmYKaDR8ZXeAFYPw29o_M2JzAnZRkyeMA0,9894
|
|
59
|
+
gwaslab/viz_plot_trumpetplot.py,sha256=-W6-qvpg_bdPsE5GOnwwJ4WRY9dLSu4XCdm1m3SpiEo,37237
|
|
60
|
+
gwaslab/data/formatbook.json,sha256=N2nJs80HH98Rsu9FxaSvIQO9J5yIV97WEtAKjRqYwiY,38207
|
|
61
|
+
gwaslab/data/reference.json,sha256=k8AvvgDsuLxzv-NCJHWvTUZ5q_DLAFxs1Th3jtL313k,11441
|
|
62
|
+
gwaslab/data/chrx_par/chrx_par_hg19.bed.gz,sha256=LocZg_ozhZjQiIpgWCO4EYCW9xgkEKpRy1m-YdIpzQs,83
|
|
63
|
+
gwaslab/data/chrx_par/chrx_par_hg38.bed.gz,sha256=VFW11MnQVC-Iu-ZGvUDcEhVpb-HVRsVTg-W-GNJyxP4,82
|
|
64
|
+
gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW09DWXHIi2kcPebctMnhxt8mzfU,10282886
|
|
65
|
+
gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
|
|
66
|
+
gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
|
|
67
|
+
gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
|
|
68
|
+
gwaslab-3.4.38.dist-info/LICENSE,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
|
|
69
|
+
gwaslab-3.4.38.dist-info/METADATA,sha256=Y8WW-j1IjW151zNScfgaQq2HQ46TnPS-wLonkGtmP14,6804
|
|
70
|
+
gwaslab-3.4.38.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
71
|
+
gwaslab-3.4.38.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
|
|
72
|
+
gwaslab-3.4.38.dist-info/RECORD,,
|
gwaslab-3.4.36.dist-info/RECORD
DELETED
|
@@ -1,72 +0,0 @@
|
|
|
1
|
-
gwaslab/__init__.py,sha256=vD_LWA3kzEkPtrFT5EnmqMiBWN6xTERIMDJbN00p2oE,2382
|
|
2
|
-
gwaslab/bd_common_data.py,sha256=-YlytsRU3YnwI23EV0U_pFWZ0_0yL23_RwTfBajEuPw,11844
|
|
3
|
-
gwaslab/bd_config.py,sha256=TP-r-DPhJD3XnRYZbw9bQHXaDIkiRgK8bG9HCt-UaLc,580
|
|
4
|
-
gwaslab/bd_download.py,sha256=Nh09FP_d5kLsAyEF-WOYd7tty-ypvJv0PSTEO4JB2cc,15636
|
|
5
|
-
gwaslab/bd_get_hapmap3.py,sha256=poqV3Ko56xhRFKdSK0ROwDQ71b27-9bMOQ0XO36To5c,2034
|
|
6
|
-
gwaslab/g_Log.py,sha256=ICCzc2iP-toIRhXSnRufMqJrB6MtstJXk5qmC2yK6pY,821
|
|
7
|
-
gwaslab/g_Phenotypes.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
|
-
gwaslab/g_Sumstats.py,sha256=W8XAP6C1nxs4uFQWi8hOx1qPG03hkV4wFVIwfNvKtNc,32004
|
|
9
|
-
gwaslab/g_SumstatsPair.py,sha256=eFFcL0foi7KJ2t7yf98WIyUMv-Kl6IrvSdv3FtqZmXs,5971
|
|
10
|
-
gwaslab/g_SumstatsT.py,sha256=r3fAN-LsUIJhi7mhLH_4NBwHCOawVkbWULKY1vbmdZY,2113
|
|
11
|
-
gwaslab/g_Sumstats_summary.py,sha256=Q69702tABxTVk6QIbqQ4k6eSujhXr_MVVQ5saOdEhlk,6367
|
|
12
|
-
gwaslab/g_meta.py,sha256=KT5Es_xeCijxZ35fb6qyJ1LiBQ8WIuo5eEjGy048qVE,2193
|
|
13
|
-
gwaslab/g_vchange_status.py,sha256=eX0jdIb6Spa07ZdpWNqUWqdVBWS0fuH2yrt4PDi3Res,1746
|
|
14
|
-
gwaslab/g_version.py,sha256=hr_Dl0fwgypHQHtSjlnr-IyGSYg_cFrq7ftAZbYGMOA,1688
|
|
15
|
-
gwaslab/hm_casting.py,sha256=w8Qz0IlFwmn4_uUc7aOccWZCfY_e19ZZr-iYgCu-SnQ,10350
|
|
16
|
-
gwaslab/hm_harmonize_sumstats.py,sha256=yPY_CpQzjd_YkwW_jXGePHkqeDcs7Kzl_eMpE5bnxKI,40859
|
|
17
|
-
gwaslab/hm_rsid_to_chrpos.py,sha256=-pKhY654zS4uULW7FP4yGHNy3e9Wc2ujc1VLBaoUO5A,6564
|
|
18
|
-
gwaslab/io_preformat_input.py,sha256=3dkwgo-eyKpML5U8cmphvQEqWKuome8sKcjpF1JBq7w,19486
|
|
19
|
-
gwaslab/io_read_ldsc.py,sha256=mro3Vc3dQs6dQ2zsUaUYHOqJGIhJaNzxPeE3zsfO7dA,8659
|
|
20
|
-
gwaslab/io_read_tabular.py,sha256=_gI0EA4CDecTPHTDp6hW2PesagYHHbBQvI_tW8U3Tc8,2366
|
|
21
|
-
gwaslab/io_to_formats.py,sha256=tayh5qoxe9tn_g3mHTbfT3Jkz7kTo8BOPjpMtoMlfAY,21111
|
|
22
|
-
gwaslab/io_to_pickle.py,sha256=XmxhV5-38ED8aEyPYzsskv7HrxCyge9tHJ2F21QA8Ms,1824
|
|
23
|
-
gwaslab/qc_check_datatype.py,sha256=mD0_wfgQsDRx8LFRQ_xaJ9zxDm9A6ZaNDxVOFn-SllU,2737
|
|
24
|
-
gwaslab/qc_fix_sumstats.py,sha256=VdMxXd9IXCRxKzhW1lZXJUaPC77F83glXbw_clwoK7o,80794
|
|
25
|
-
gwaslab/run_script.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
26
|
-
gwaslab/util_ex_calculate_ldmatrix.py,sha256=hjFOZqGfQixTjMSxgVbB-JQwP0QcQMKfbhs-dsLT5Qw,12112
|
|
27
|
-
gwaslab/util_ex_calculate_prs.py,sha256=uOcMRWujEYMYGuO-qGe3okQJYizXGvqDcomXlzLvln8,9049
|
|
28
|
-
gwaslab/util_ex_gwascatalog.py,sha256=Y3CiBu03yrJ4SDubl3mOq62fIkbr7bZ1lwbhWEVWKmA,7576
|
|
29
|
-
gwaslab/util_ex_ldproxyfinder.py,sha256=C705kiw673DaijrccJ8ifO2IXR9RHP8B7Jfp0_-7UWo,9398
|
|
30
|
-
gwaslab/util_ex_plink_filter.py,sha256=Ak09-tEIS_uq1OtiCmcDCXcEjzQHCEfp44AKkhgoOzY,1669
|
|
31
|
-
gwaslab/util_ex_process_h5.py,sha256=Xcdr3sqZ1RpVUdjUKp0nCp50lIuIFL4cojQYhYI6D5w,2267
|
|
32
|
-
gwaslab/util_ex_process_ref.py,sha256=vB5tDnlpnStLJq1QgxwhJQ1wRlQ8hy-yI5smm2wUjaA,16445
|
|
33
|
-
gwaslab/util_ex_run_2samplemr.py,sha256=AvhpR_ihR052LBabR1wfEaBqfwCs88VW8Q2ijdKMfUs,9040
|
|
34
|
-
gwaslab/util_ex_run_clumping.py,sha256=fE-PHeYjl8I08ycwCbJrQjF3wixMDYKNe4EASupEMpo,6816
|
|
35
|
-
gwaslab/util_ex_run_coloc.py,sha256=Fx-bYWQyZVqvpJWUA97B8STBdoj462YXrC9-Zf9BMRM,5117
|
|
36
|
-
gwaslab/util_ex_run_susie.py,sha256=fxs5eCxA48j62dZlgTAPk8FMEIH7NK9cQxoy_s8RbdY,4252
|
|
37
|
-
gwaslab/util_in_calculate_gc.py,sha256=HqyBBDorWoBlmD1i4K2Vr4vTTPqg5YLM8ktdvCpKe_c,2176
|
|
38
|
-
gwaslab/util_in_calculate_power.py,sha256=Kk46GHKDcub6l1XTT-ZT5hrPmR8EUa_tS_LIPbLRvbU,10112
|
|
39
|
-
gwaslab/util_in_convert_h2.py,sha256=azqGs9whhhukVDFruAwTobor4-LnGHWIOrhK_avRnWs,6468
|
|
40
|
-
gwaslab/util_in_correct_winnerscurse.py,sha256=o7CjUwLp4B_60yrntV76ESNaoPcl-HPOzSw9cYWzpW4,2050
|
|
41
|
-
gwaslab/util_in_fill_data.py,sha256=5J8zt2-wuzL_ehC2JKg2IO-RcQ2eE8yS9X3R6tjsRf4,12873
|
|
42
|
-
gwaslab/util_in_filter_value.py,sha256=rF2Nv1H-dxJZIIvw0r1tCB2xAFXt75qbpNJOpnEVffw,14647
|
|
43
|
-
gwaslab/util_in_get_density.py,sha256=n4GFhuqyJ4HBepHJeMXVsddGRweFBaBQNueMg3hs4D8,3905
|
|
44
|
-
gwaslab/util_in_get_sig.py,sha256=hrZrLb50h2V-PtPXkwJ2F_jc1piMJ2wJqWTqSq9cnEg,19805
|
|
45
|
-
gwaslab/viz_aux_annotate_plot.py,sha256=BKwvyXydKjgFo2w2ZCwxtxRLGT-g5e6eayhkSje3Lfc,32124
|
|
46
|
-
gwaslab/viz_aux_quickfix.py,sha256=hrrLADC9h1J7SCL1KDUYf-8zGrhXRHMvrwARSYpNExw,17906
|
|
47
|
-
gwaslab/viz_aux_reposition_text.py,sha256=N0jMQSAnFPFWwx9mUFTcVtntdA56I_3vB332jtpezU4,4233
|
|
48
|
-
gwaslab/viz_aux_save_figure.py,sha256=KfpYuSNxYv0EvcoR5n2AWjnGnJzFrYfyoGfJd71NYMQ,2083
|
|
49
|
-
gwaslab/viz_plot_compare_af.py,sha256=vVypmnF-l6JzXyi5HPYFr-GM-OmNQGvip8oTCBvvHsk,5532
|
|
50
|
-
gwaslab/viz_plot_compare_effect.py,sha256=LVRPRpbwrlxEvJPDauKTgPy4zZss3RylnLBOoqdTzEM,49019
|
|
51
|
-
gwaslab/viz_plot_forestplot.py,sha256=xgOnefh737CgdQxu5naVyRNBX1NQXPFKzf51fbh6afs,6771
|
|
52
|
-
gwaslab/viz_plot_miamiplot.py,sha256=rCFEp7VNuVqeBBG3WRkmFAtFklbF79BvIQQYiSY70VY,31238
|
|
53
|
-
gwaslab/viz_plot_miamiplot2.py,sha256=aJcA5eEY44VuGMZMBKM6aPE1D_D6w2O2Jmw5QwUoyik,15371
|
|
54
|
-
gwaslab/viz_plot_mqqplot.py,sha256=PHZ_f1MPg5aqwTyBDcaT6xpNLzkWqUaNb9efqLx0tiE,55775
|
|
55
|
-
gwaslab/viz_plot_qqplot.py,sha256=XVnNbX5oXk2yvXT4uSuGtWW1fbr_FzAlWNjRW_bWmyU,7012
|
|
56
|
-
gwaslab/viz_plot_regionalplot.py,sha256=rIaX99Drq3kCTyahthbkpek3Tf0UpFXLfpIGX_iAh70,37122
|
|
57
|
-
gwaslab/viz_plot_rg_heatmap.py,sha256=nibSCUnY_ZskCpJx7ppOgyqOuXBaWy6r7c_1McrQmZ0,13877
|
|
58
|
-
gwaslab/viz_plot_stackedregional.py,sha256=Ne7ncUN4iwmYKaDR8ZXeAFYPw29o_M2JzAnZRkyeMA0,9894
|
|
59
|
-
gwaslab/viz_plot_trumpetplot.py,sha256=YAcLDgqPr9JK0vKo_ZDtfKgkhHpQVOxeg2UnbQ2HsA8,37002
|
|
60
|
-
gwaslab/data/formatbook.json,sha256=oZSIk4-TX1_ODFwArhAeGB4f3N_c5HNOqQ9R4NceLL0,38181
|
|
61
|
-
gwaslab/data/reference.json,sha256=k8AvvgDsuLxzv-NCJHWvTUZ5q_DLAFxs1Th3jtL313k,11441
|
|
62
|
-
gwaslab/data/chrx_par/chrx_par_hg19.bed.gz,sha256=LocZg_ozhZjQiIpgWCO4EYCW9xgkEKpRy1m-YdIpzQs,83
|
|
63
|
-
gwaslab/data/chrx_par/chrx_par_hg38.bed.gz,sha256=VFW11MnQVC-Iu-ZGvUDcEhVpb-HVRsVTg-W-GNJyxP4,82
|
|
64
|
-
gwaslab/data/hapmap3_SNPs/hapmap3_db150_hg19.snplist.gz,sha256=qD9RsC5S2h6l-OdpW09DWXHIi2kcPebctMnhxt8mzfU,10282886
|
|
65
|
-
gwaslab/data/hapmap3_SNPs/hapmap3_db151_hg38.snplist.gz,sha256=Y8ZT2FIAhbhlgCJdE9qQVAiwnV_fcsPt72usBa7RSBM,10225828
|
|
66
|
-
gwaslab/data/high_ld/high_ld_hla_hg19.bed.gz,sha256=R7IkssKu0L4WwkU9SrS84xCMdrkkKL0gnTNO_OKbG0Y,219
|
|
67
|
-
gwaslab/data/high_ld/high_ld_hla_hg38.bed.gz,sha256=76CIU0pibDJ72Y6UY-TbIKE9gEPwTELAaIbCXyjm80Q,470
|
|
68
|
-
gwaslab-3.4.36.dist-info/LICENSE,sha256=GhLOU_1UDEKeOacYhsRN_m9u-eIuVTazSndZPeNcTZA,1066
|
|
69
|
-
gwaslab-3.4.36.dist-info/METADATA,sha256=j5hCOz5Mas0ZHjMla_nMOJJxysnkkqiv3FSclqR0Z34,6806
|
|
70
|
-
gwaslab-3.4.36.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
71
|
-
gwaslab-3.4.36.dist-info/top_level.txt,sha256=PyY6hWtrALpv2MAN3kjkIAzJNmmBTH5a2risz9KwH08,8
|
|
72
|
-
gwaslab-3.4.36.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|