gtsam-develop 4.3a0.dev202510101133__cp311-cp311-macosx_11_0_arm64.whl → 4.3a0.dev202510101309__cp311-cp311-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of gtsam-develop might be problematic. Click here for more details.
- gtsam/.dylibs/{libgtsam.4.3a0.dev202510101133.dylib → libgtsam.4.3a0.dev202510101309.dylib} +0 -0
- gtsam/.dylibs/{libgtsam_unstable.4.3a0.dev202510101133.dylib → libgtsam_unstable.4.3a0.dev202510101309.dylib} +0 -0
- gtsam/__init__.pyi +15 -15
- gtsam/gtsam/__init__.pyi +3234 -3057
- gtsam/gtsam/gtsfm.pyi +10 -5
- gtsam/gtsam/imuBias.pyi +10 -10
- gtsam/gtsam/noiseModel/__init__.pyi +30 -29
- gtsam/gtsam/noiseModel/mEstimator.pyi +57 -58
- gtsam/gtsam/so3.pyi +34 -23
- gtsam/gtsam/symbol_shorthand.pyi +27 -26
- gtsam/gtsam/utilities.pyi +20 -20
- gtsam/gtsam.cpython-311-darwin.so +0 -0
- {gtsam_develop-4.3a0.dev202510101133.dist-info → gtsam_develop-4.3a0.dev202510101309.dist-info}/METADATA +1 -1
- {gtsam_develop-4.3a0.dev202510101133.dist-info → gtsam_develop-4.3a0.dev202510101309.dist-info}/RECORD +17 -17
- gtsam_unstable/gtsam_unstable.cpython-311-darwin.so +0 -0
- {gtsam_develop-4.3a0.dev202510101133.dist-info → gtsam_develop-4.3a0.dev202510101309.dist-info}/WHEEL +0 -0
- {gtsam_develop-4.3a0.dev202510101133.dist-info → gtsam_develop-4.3a0.dev202510101309.dist-info}/top_level.txt +0 -0
gtsam/gtsam/gtsfm.pyi
CHANGED
|
@@ -2,15 +2,20 @@
|
|
|
2
2
|
gtsfm submodule
|
|
3
3
|
"""
|
|
4
4
|
from __future__ import annotations
|
|
5
|
+
import collections.abc
|
|
5
6
|
import gtsam.gtsam
|
|
6
7
|
import numpy
|
|
8
|
+
import numpy.typing
|
|
7
9
|
import typing
|
|
8
10
|
__all__: list[str] = ['Keypoints', 'tracksFromPairwiseMatches']
|
|
9
|
-
M = typing.TypeVar("M", bound=int)
|
|
10
|
-
N = typing.TypeVar("N", bound=int)
|
|
11
11
|
class Keypoints:
|
|
12
|
-
coordinates: numpy.
|
|
13
|
-
def __init__(self, coordinates: numpy.ndarray[tuple[M, typing.Literal[2]], numpy.dtype[numpy.float64]]) -> None:
|
|
12
|
+
def __init__(self, coordinates: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 2]"]) -> None:
|
|
14
13
|
...
|
|
15
|
-
|
|
14
|
+
@property
|
|
15
|
+
def coordinates(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 2]"]:
|
|
16
|
+
...
|
|
17
|
+
@coordinates.setter
|
|
18
|
+
def coordinates(self, arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 2]"]) -> None:
|
|
19
|
+
...
|
|
20
|
+
def tracksFromPairwiseMatches(matches_dict: collections.abc.Mapping[gtsam.gtsam.IndexPair, typing.Annotated[numpy.typing.ArrayLike, numpy.int32, "[m, 2]"]], keypoints_list: collections.abc.Sequence[Keypoints], verbose: bool = False) -> list[gtsam.gtsam.SfmTrack2d]:
|
|
16
21
|
...
|
gtsam/gtsam/imuBias.pyi
CHANGED
|
@@ -3,9 +3,9 @@ imuBias submodule
|
|
|
3
3
|
"""
|
|
4
4
|
from __future__ import annotations
|
|
5
5
|
import numpy
|
|
6
|
+
import numpy.typing
|
|
6
7
|
import typing
|
|
7
8
|
__all__: list[str] = ['ConstantBias']
|
|
8
|
-
M = typing.TypeVar("M", bound=int)
|
|
9
9
|
class ConstantBias:
|
|
10
10
|
@staticmethod
|
|
11
11
|
def Identity() -> ConstantBias:
|
|
@@ -20,7 +20,7 @@ class ConstantBias:
|
|
|
20
20
|
def __init__(self) -> None:
|
|
21
21
|
...
|
|
22
22
|
@typing.overload
|
|
23
|
-
def __init__(self, biasAcc: numpy.
|
|
23
|
+
def __init__(self, biasAcc: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], biasGyro: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> None:
|
|
24
24
|
...
|
|
25
25
|
def __neg__(self) -> ConstantBias:
|
|
26
26
|
...
|
|
@@ -30,41 +30,41 @@ class ConstantBias:
|
|
|
30
30
|
...
|
|
31
31
|
def __sub__(self, arg0: ConstantBias) -> ConstantBias:
|
|
32
32
|
...
|
|
33
|
-
def accelerometer(self) -> numpy.
|
|
33
|
+
def accelerometer(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3, 1]"]:
|
|
34
34
|
"""
|
|
35
35
|
get accelerometer bias
|
|
36
36
|
"""
|
|
37
|
-
def correctAccelerometer(self, measurement: numpy.
|
|
37
|
+
def correctAccelerometer(self, measurement: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3, 1]"]:
|
|
38
38
|
"""
|
|
39
39
|
Correct an accelerometer measurement using this bias model, and optionally compute Jacobians.
|
|
40
40
|
"""
|
|
41
|
-
def correctGyroscope(self, measurement: numpy.
|
|
41
|
+
def correctGyroscope(self, measurement: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3, 1]"]:
|
|
42
42
|
"""
|
|
43
43
|
Correct a gyroscope measurement using this bias model, and optionally compute Jacobians.
|
|
44
44
|
"""
|
|
45
45
|
def deserialize(self, serialized: str) -> None:
|
|
46
46
|
...
|
|
47
|
-
def equals(self, expected: ConstantBias, tol:
|
|
47
|
+
def equals(self, expected: ConstantBias, tol: typing.SupportsFloat) -> bool:
|
|
48
48
|
"""
|
|
49
49
|
equality up to tolerance
|
|
50
50
|
"""
|
|
51
|
-
def gyroscope(self) -> numpy.
|
|
51
|
+
def gyroscope(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3, 1]"]:
|
|
52
52
|
"""
|
|
53
53
|
get gyroscope bias
|
|
54
54
|
"""
|
|
55
|
-
def localCoordinates(self, b: ConstantBias) -> numpy.
|
|
55
|
+
def localCoordinates(self, b: ConstantBias) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[6, 1]"]:
|
|
56
56
|
...
|
|
57
57
|
def print(self, s: str = '') -> None:
|
|
58
58
|
"""
|
|
59
59
|
print with optional string
|
|
60
60
|
"""
|
|
61
|
-
def retract(self, v: numpy.
|
|
61
|
+
def retract(self, v: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> ConstantBias:
|
|
62
62
|
"""
|
|
63
63
|
The retract function.
|
|
64
64
|
"""
|
|
65
65
|
def serialize(self) -> str:
|
|
66
66
|
...
|
|
67
|
-
def vector(self) -> numpy.
|
|
67
|
+
def vector(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[6, 1]"]:
|
|
68
68
|
"""
|
|
69
69
|
return the accelerometer and gyro biases in a single vector
|
|
70
70
|
"""
|
|
@@ -3,6 +3,7 @@ noiseModel submodule
|
|
|
3
3
|
"""
|
|
4
4
|
from __future__ import annotations
|
|
5
5
|
import numpy
|
|
6
|
+
import numpy.typing
|
|
6
7
|
import typing
|
|
7
8
|
from . import mEstimator
|
|
8
9
|
__all__: list[str] = ['Base', 'Constrained', 'Diagonal', 'Gaussian', 'Isotropic', 'Robust', 'Unit', 'mEstimator']
|
|
@@ -14,47 +15,47 @@ class Base:
|
|
|
14
15
|
class Constrained(Diagonal):
|
|
15
16
|
@staticmethod
|
|
16
17
|
@typing.overload
|
|
17
|
-
def All(dim:
|
|
18
|
+
def All(dim: typing.SupportsInt) -> Constrained:
|
|
18
19
|
"""
|
|
19
20
|
Fully constrained variations.
|
|
20
21
|
"""
|
|
21
22
|
@staticmethod
|
|
22
23
|
@typing.overload
|
|
23
|
-
def All(dim:
|
|
24
|
+
def All(dim: typing.SupportsInt, mu: typing.SupportsFloat) -> Constrained:
|
|
24
25
|
"""
|
|
25
26
|
Fully constrained variations.
|
|
26
27
|
"""
|
|
27
28
|
@staticmethod
|
|
28
29
|
@typing.overload
|
|
29
|
-
def MixedPrecisions(mu: numpy.
|
|
30
|
+
def MixedPrecisions(mu: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], precisions: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
30
31
|
"""
|
|
31
32
|
A diagonal noise model created by specifying a Vector of precisions, some of which might be inf.
|
|
32
33
|
"""
|
|
33
34
|
@staticmethod
|
|
34
35
|
@typing.overload
|
|
35
|
-
def MixedPrecisions(precisions: numpy.
|
|
36
|
+
def MixedPrecisions(precisions: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
36
37
|
...
|
|
37
38
|
@staticmethod
|
|
38
39
|
@typing.overload
|
|
39
|
-
def MixedSigmas(mu: numpy.
|
|
40
|
+
def MixedSigmas(mu: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], sigmas: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
40
41
|
"""
|
|
41
42
|
A diagonal noise model created by specifying a Vector of standard devations, some of which might be zero.
|
|
42
43
|
"""
|
|
43
44
|
@staticmethod
|
|
44
45
|
@typing.overload
|
|
45
|
-
def MixedSigmas(m:
|
|
46
|
+
def MixedSigmas(m: typing.SupportsFloat, sigmas: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
46
47
|
"""
|
|
47
48
|
A diagonal noise model created by specifying a Vector of standard devations, some of which might be zero.
|
|
48
49
|
"""
|
|
49
50
|
@staticmethod
|
|
50
51
|
@typing.overload
|
|
51
|
-
def MixedVariances(mu: numpy.
|
|
52
|
+
def MixedVariances(mu: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], variances: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
52
53
|
"""
|
|
53
54
|
A diagonal noise model created by specifying a Vector of standard devations, some of which might be zero.
|
|
54
55
|
"""
|
|
55
56
|
@staticmethod
|
|
56
57
|
@typing.overload
|
|
57
|
-
def MixedVariances(variances: numpy.
|
|
58
|
+
def MixedVariances(variances: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> Constrained:
|
|
58
59
|
...
|
|
59
60
|
def __getstate__(self) -> tuple:
|
|
60
61
|
...
|
|
@@ -70,21 +71,21 @@ class Constrained(Diagonal):
|
|
|
70
71
|
"""
|
|
71
72
|
class Diagonal(Gaussian):
|
|
72
73
|
@staticmethod
|
|
73
|
-
def Precisions(precisions: numpy.
|
|
74
|
+
def Precisions(precisions: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], smart: bool = True) -> Diagonal:
|
|
74
75
|
"""
|
|
75
76
|
A diagonal noise model created by specifying a Vector of precisions, i.e.
|
|
76
77
|
|
|
77
78
|
i.e. the diagonal of the information matrix, i.e., weights
|
|
78
79
|
"""
|
|
79
80
|
@staticmethod
|
|
80
|
-
def Sigmas(sigmas: numpy.
|
|
81
|
+
def Sigmas(sigmas: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], smart: bool = True) -> Diagonal:
|
|
81
82
|
"""
|
|
82
83
|
A diagonal noise model created by specifying a Vector of sigmas, i.e.
|
|
83
84
|
|
|
84
85
|
standard deviations, the diagonal of the square root covariance matrix.
|
|
85
86
|
"""
|
|
86
87
|
@staticmethod
|
|
87
|
-
def Variances(variances: numpy.
|
|
88
|
+
def Variances(variances: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"], smart: bool = True) -> Diagonal:
|
|
88
89
|
"""
|
|
89
90
|
A diagonal noise model created by specifying a Vector of variances, i.e.
|
|
90
91
|
|
|
@@ -92,7 +93,7 @@ class Diagonal(Gaussian):
|
|
|
92
93
|
variances: A vector containing the variances of this noise model
|
|
93
94
|
smart: check if can be simplified to derived class
|
|
94
95
|
"""
|
|
95
|
-
def R(self) ->
|
|
96
|
+
def R(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, n]"]:
|
|
96
97
|
"""
|
|
97
98
|
Return R itself, but note that Whiten(H) is cheaper than R*H.
|
|
98
99
|
"""
|
|
@@ -102,29 +103,29 @@ class Diagonal(Gaussian):
|
|
|
102
103
|
...
|
|
103
104
|
def deserialize(self, serialized: str) -> None:
|
|
104
105
|
...
|
|
105
|
-
def invsigmas(self) ->
|
|
106
|
+
def invsigmas(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 1]"]:
|
|
106
107
|
"""
|
|
107
108
|
Return sqrt precisions.
|
|
108
109
|
"""
|
|
109
|
-
def precisions(self) ->
|
|
110
|
+
def precisions(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 1]"]:
|
|
110
111
|
"""
|
|
111
112
|
Return precisions.
|
|
112
113
|
"""
|
|
113
114
|
def serialize(self) -> str:
|
|
114
115
|
...
|
|
115
|
-
def sigmas(self) ->
|
|
116
|
+
def sigmas(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 1]"]:
|
|
116
117
|
"""
|
|
117
118
|
Calculate standard deviations.
|
|
118
119
|
"""
|
|
119
120
|
class Gaussian(Base):
|
|
120
121
|
@staticmethod
|
|
121
|
-
def Covariance(R: numpy.
|
|
122
|
+
def Covariance(R: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, n]"], smart: bool = True) -> Gaussian:
|
|
122
123
|
...
|
|
123
124
|
@staticmethod
|
|
124
|
-
def Information(R: numpy.
|
|
125
|
+
def Information(R: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, n]"], smart: bool = True) -> Gaussian:
|
|
125
126
|
...
|
|
126
127
|
@staticmethod
|
|
127
|
-
def SqrtInformation(R: numpy.
|
|
128
|
+
def SqrtInformation(R: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, n]"], smart: bool = True) -> Gaussian:
|
|
128
129
|
"""
|
|
129
130
|
AGaussiannoise model created by specifying a square root information matrix.
|
|
130
131
|
|
|
@@ -132,11 +133,11 @@ class Gaussian(Base):
|
|
|
132
133
|
R: The (upper-triangular) square root information matrix
|
|
133
134
|
smart: check if can be simplified to derived class
|
|
134
135
|
"""
|
|
135
|
-
def R(self) ->
|
|
136
|
+
def R(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, n]"]:
|
|
136
137
|
"""
|
|
137
138
|
Return R itself, but note that Whiten(H) is cheaper than R*H.
|
|
138
139
|
"""
|
|
139
|
-
def Whiten(self, H: numpy.
|
|
140
|
+
def Whiten(self, H: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, n]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, n]"]:
|
|
140
141
|
"""
|
|
141
142
|
Multiply a derivative with R (derivative of whiten) Equivalent to whitening each column of the input matrix.
|
|
142
143
|
"""
|
|
@@ -144,15 +145,15 @@ class Gaussian(Base):
|
|
|
144
145
|
...
|
|
145
146
|
def __setstate__(self, arg0: tuple) -> None:
|
|
146
147
|
...
|
|
147
|
-
def covariance(self) ->
|
|
148
|
+
def covariance(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, n]"]:
|
|
148
149
|
"""
|
|
149
150
|
Compute covariance matrix.
|
|
150
151
|
"""
|
|
151
152
|
def deserialize(self, serialized: str) -> None:
|
|
152
153
|
...
|
|
153
|
-
def equals(self, expected: Base, tol:
|
|
154
|
+
def equals(self, expected: Base, tol: typing.SupportsFloat) -> bool:
|
|
154
155
|
...
|
|
155
|
-
def information(self) ->
|
|
156
|
+
def information(self) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, n]"]:
|
|
156
157
|
"""
|
|
157
158
|
Compute information matrix.
|
|
158
159
|
"""
|
|
@@ -164,27 +165,27 @@ class Gaussian(Base):
|
|
|
164
165
|
"""
|
|
165
166
|
def serialize(self) -> str:
|
|
166
167
|
...
|
|
167
|
-
def unwhiten(self, v: numpy.
|
|
168
|
+
def unwhiten(self, v: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 1]"]:
|
|
168
169
|
"""
|
|
169
170
|
Unwhiten an error vector.
|
|
170
171
|
"""
|
|
171
|
-
def whiten(self, v: numpy.
|
|
172
|
+
def whiten(self, v: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[m, 1]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[m, 1]"]:
|
|
172
173
|
"""
|
|
173
174
|
Whiten an error vector.
|
|
174
175
|
"""
|
|
175
176
|
class Isotropic(Diagonal):
|
|
176
177
|
@staticmethod
|
|
177
|
-
def Precision(dim:
|
|
178
|
+
def Precision(dim: typing.SupportsInt, precision: typing.SupportsFloat, smart: bool = True) -> Isotropic:
|
|
178
179
|
"""
|
|
179
180
|
An isotropic noise model created by specifying a precision.
|
|
180
181
|
"""
|
|
181
182
|
@staticmethod
|
|
182
|
-
def Sigma(dim:
|
|
183
|
+
def Sigma(dim: typing.SupportsInt, sigma: typing.SupportsFloat, smart: bool = True) -> Isotropic:
|
|
183
184
|
"""
|
|
184
185
|
An isotropic noise model created by specifying a standard devation sigma.
|
|
185
186
|
"""
|
|
186
187
|
@staticmethod
|
|
187
|
-
def Variance(dim:
|
|
188
|
+
def Variance(dim: typing.SupportsInt, varianace: typing.SupportsFloat, smart: bool = True) -> Isotropic:
|
|
188
189
|
...
|
|
189
190
|
def __getstate__(self) -> tuple:
|
|
190
191
|
...
|
|
@@ -214,7 +215,7 @@ class Robust(Base):
|
|
|
214
215
|
...
|
|
215
216
|
class Unit(Isotropic):
|
|
216
217
|
@staticmethod
|
|
217
|
-
def Create(dim:
|
|
218
|
+
def Create(dim: typing.SupportsInt) -> Unit:
|
|
218
219
|
"""
|
|
219
220
|
Create a unit covariance noise model.
|
|
220
221
|
"""
|
|
@@ -2,55 +2,54 @@
|
|
|
2
2
|
mEstimator submodule
|
|
3
3
|
"""
|
|
4
4
|
from __future__ import annotations
|
|
5
|
+
import collections.abc
|
|
5
6
|
import typing
|
|
6
7
|
__all__: list[str] = ['AsymmetricCauchy', 'AsymmetricTukey', 'Base', 'Cauchy', 'Custom', 'DCS', 'Fair', 'GemanMcClure', 'Huber', 'L2WithDeadZone', 'Null', 'Tukey', 'Welsch']
|
|
7
|
-
M = typing.TypeVar("M", bound=int)
|
|
8
|
-
N = typing.TypeVar("N", bound=int)
|
|
9
8
|
class AsymmetricCauchy(Base):
|
|
10
9
|
@staticmethod
|
|
11
|
-
def Create(k:
|
|
10
|
+
def Create(k: typing.SupportsFloat) -> AsymmetricCauchy:
|
|
12
11
|
...
|
|
13
12
|
def __getstate__(self) -> tuple:
|
|
14
13
|
...
|
|
15
14
|
@typing.overload
|
|
16
|
-
def __init__(self, k:
|
|
15
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
17
16
|
...
|
|
18
17
|
@typing.overload
|
|
19
|
-
def __init__(self, k:
|
|
18
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
20
19
|
...
|
|
21
20
|
def __setstate__(self, arg0: tuple) -> None:
|
|
22
21
|
...
|
|
23
22
|
def deserialize(self, serialized: str) -> None:
|
|
24
23
|
...
|
|
25
|
-
def loss(self, error:
|
|
24
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
26
25
|
...
|
|
27
26
|
def serialize(self) -> str:
|
|
28
27
|
...
|
|
29
|
-
def weight(self, error:
|
|
28
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
30
29
|
"""
|
|
31
30
|
produce a weight vector according to an error vector and the implemented robust function
|
|
32
31
|
"""
|
|
33
32
|
class AsymmetricTukey(Base):
|
|
34
33
|
@staticmethod
|
|
35
|
-
def Create(k:
|
|
34
|
+
def Create(k: typing.SupportsFloat) -> AsymmetricTukey:
|
|
36
35
|
...
|
|
37
36
|
def __getstate__(self) -> tuple:
|
|
38
37
|
...
|
|
39
38
|
@typing.overload
|
|
40
|
-
def __init__(self, k:
|
|
39
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
41
40
|
...
|
|
42
41
|
@typing.overload
|
|
43
|
-
def __init__(self, k:
|
|
42
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
44
43
|
...
|
|
45
44
|
def __setstate__(self, arg0: tuple) -> None:
|
|
46
45
|
...
|
|
47
46
|
def deserialize(self, serialized: str) -> None:
|
|
48
47
|
...
|
|
49
|
-
def loss(self, error:
|
|
48
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
50
49
|
...
|
|
51
50
|
def serialize(self) -> str:
|
|
52
51
|
...
|
|
53
|
-
def weight(self, error:
|
|
52
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
54
53
|
"""
|
|
55
54
|
produce a weight vector according to an error vector and the implemented robust function
|
|
56
55
|
"""
|
|
@@ -80,7 +79,7 @@ class Base:
|
|
|
80
79
|
...
|
|
81
80
|
def __index__(self) -> int:
|
|
82
81
|
...
|
|
83
|
-
def __init__(self, value:
|
|
82
|
+
def __init__(self, value: typing.SupportsInt) -> None:
|
|
84
83
|
...
|
|
85
84
|
def __int__(self) -> int:
|
|
86
85
|
...
|
|
@@ -102,7 +101,7 @@ class Base:
|
|
|
102
101
|
...
|
|
103
102
|
def __rxor__(self, other: typing.Any) -> typing.Any:
|
|
104
103
|
...
|
|
105
|
-
def __setstate__(self, state:
|
|
104
|
+
def __setstate__(self, state: typing.SupportsInt) -> None:
|
|
106
105
|
...
|
|
107
106
|
def __str__(self) -> str:
|
|
108
107
|
...
|
|
@@ -120,157 +119,157 @@ class Base:
|
|
|
120
119
|
...
|
|
121
120
|
class Cauchy(Base):
|
|
122
121
|
@staticmethod
|
|
123
|
-
def Create(k:
|
|
122
|
+
def Create(k: typing.SupportsFloat) -> Cauchy:
|
|
124
123
|
...
|
|
125
124
|
def __getstate__(self) -> tuple:
|
|
126
125
|
...
|
|
127
126
|
@typing.overload
|
|
128
|
-
def __init__(self, k:
|
|
127
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
129
128
|
...
|
|
130
129
|
@typing.overload
|
|
131
|
-
def __init__(self, k:
|
|
130
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
132
131
|
...
|
|
133
132
|
def __setstate__(self, arg0: tuple) -> None:
|
|
134
133
|
...
|
|
135
134
|
def deserialize(self, serialized: str) -> None:
|
|
136
135
|
...
|
|
137
|
-
def loss(self, error:
|
|
136
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
138
137
|
...
|
|
139
138
|
def serialize(self) -> str:
|
|
140
139
|
...
|
|
141
|
-
def weight(self, error:
|
|
140
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
142
141
|
"""
|
|
143
142
|
produce a weight vector according to an error vector and the implemented robust function
|
|
144
143
|
"""
|
|
145
144
|
class Custom(Base):
|
|
146
145
|
@staticmethod
|
|
147
|
-
def Create(weight:
|
|
146
|
+
def Create(weight: collections.abc.Callable[[typing.SupportsFloat], float], loss: collections.abc.Callable[[typing.SupportsFloat], float], reweight: Base.ReweightScheme, name: str) -> Custom:
|
|
148
147
|
...
|
|
149
148
|
def __getstate__(self) -> tuple:
|
|
150
149
|
...
|
|
151
|
-
def __init__(self, weight:
|
|
150
|
+
def __init__(self, weight: collections.abc.Callable[[typing.SupportsFloat], float], loss: collections.abc.Callable[[typing.SupportsFloat], float], reweight: Base.ReweightScheme, name: str) -> None:
|
|
152
151
|
...
|
|
153
152
|
def __setstate__(self, arg0: tuple) -> None:
|
|
154
153
|
...
|
|
155
154
|
def deserialize(self, serialized: str) -> None:
|
|
156
155
|
...
|
|
157
|
-
def loss(self, error:
|
|
156
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
158
157
|
...
|
|
159
158
|
def serialize(self) -> str:
|
|
160
159
|
...
|
|
161
|
-
def weight(self, error:
|
|
160
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
162
161
|
"""
|
|
163
162
|
produce a weight vector according to an error vector and the implemented robust function
|
|
164
163
|
"""
|
|
165
164
|
class DCS(Base):
|
|
166
165
|
@staticmethod
|
|
167
|
-
def Create(c:
|
|
166
|
+
def Create(c: typing.SupportsFloat) -> DCS:
|
|
168
167
|
...
|
|
169
168
|
def __getstate__(self) -> tuple:
|
|
170
169
|
...
|
|
171
170
|
@typing.overload
|
|
172
|
-
def __init__(self, c:
|
|
171
|
+
def __init__(self, c: typing.SupportsFloat) -> None:
|
|
173
172
|
...
|
|
174
173
|
@typing.overload
|
|
175
|
-
def __init__(self, c:
|
|
174
|
+
def __init__(self, c: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
176
175
|
...
|
|
177
176
|
def __setstate__(self, arg0: tuple) -> None:
|
|
178
177
|
...
|
|
179
178
|
def deserialize(self, serialized: str) -> None:
|
|
180
179
|
...
|
|
181
|
-
def loss(self, error:
|
|
180
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
182
181
|
...
|
|
183
182
|
def serialize(self) -> str:
|
|
184
183
|
...
|
|
185
|
-
def weight(self, error:
|
|
184
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
186
185
|
"""
|
|
187
186
|
produce a weight vector according to an error vector and the implemented robust function
|
|
188
187
|
"""
|
|
189
188
|
class Fair(Base):
|
|
190
189
|
@staticmethod
|
|
191
|
-
def Create(c:
|
|
190
|
+
def Create(c: typing.SupportsFloat) -> Fair:
|
|
192
191
|
...
|
|
193
192
|
def __getstate__(self) -> tuple:
|
|
194
193
|
...
|
|
195
|
-
def __init__(self, c:
|
|
194
|
+
def __init__(self, c: typing.SupportsFloat) -> None:
|
|
196
195
|
...
|
|
197
196
|
def __setstate__(self, arg0: tuple) -> None:
|
|
198
197
|
...
|
|
199
198
|
def deserialize(self, serialized: str) -> None:
|
|
200
199
|
...
|
|
201
|
-
def loss(self, error:
|
|
200
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
202
201
|
...
|
|
203
202
|
def serialize(self) -> str:
|
|
204
203
|
...
|
|
205
|
-
def weight(self, error:
|
|
204
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
206
205
|
"""
|
|
207
206
|
produce a weight vector according to an error vector and the implemented robust function
|
|
208
207
|
"""
|
|
209
208
|
class GemanMcClure(Base):
|
|
210
209
|
@staticmethod
|
|
211
|
-
def Create(c:
|
|
210
|
+
def Create(c: typing.SupportsFloat) -> GemanMcClure:
|
|
212
211
|
...
|
|
213
212
|
def __getstate__(self) -> tuple:
|
|
214
213
|
...
|
|
215
214
|
@typing.overload
|
|
216
|
-
def __init__(self, c:
|
|
215
|
+
def __init__(self, c: typing.SupportsFloat) -> None:
|
|
217
216
|
...
|
|
218
217
|
@typing.overload
|
|
219
|
-
def __init__(self, c:
|
|
218
|
+
def __init__(self, c: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
220
219
|
...
|
|
221
220
|
def __setstate__(self, arg0: tuple) -> None:
|
|
222
221
|
...
|
|
223
222
|
def deserialize(self, serialized: str) -> None:
|
|
224
223
|
...
|
|
225
|
-
def loss(self, error:
|
|
224
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
226
225
|
...
|
|
227
226
|
def serialize(self) -> str:
|
|
228
227
|
...
|
|
229
|
-
def weight(self, error:
|
|
228
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
230
229
|
"""
|
|
231
230
|
produce a weight vector according to an error vector and the implemented robust function
|
|
232
231
|
"""
|
|
233
232
|
class Huber(Base):
|
|
234
233
|
@staticmethod
|
|
235
|
-
def Create(k:
|
|
234
|
+
def Create(k: typing.SupportsFloat) -> Huber:
|
|
236
235
|
...
|
|
237
236
|
def __getstate__(self) -> tuple:
|
|
238
237
|
...
|
|
239
|
-
def __init__(self, k:
|
|
238
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
240
239
|
...
|
|
241
240
|
def __setstate__(self, arg0: tuple) -> None:
|
|
242
241
|
...
|
|
243
242
|
def deserialize(self, serialized: str) -> None:
|
|
244
243
|
...
|
|
245
|
-
def loss(self, error:
|
|
244
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
246
245
|
...
|
|
247
246
|
def serialize(self) -> str:
|
|
248
247
|
...
|
|
249
|
-
def weight(self, error:
|
|
248
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
250
249
|
"""
|
|
251
250
|
produce a weight vector according to an error vector and the implemented robust function
|
|
252
251
|
"""
|
|
253
252
|
class L2WithDeadZone(Base):
|
|
254
253
|
@staticmethod
|
|
255
|
-
def Create(k:
|
|
254
|
+
def Create(k: typing.SupportsFloat) -> L2WithDeadZone:
|
|
256
255
|
...
|
|
257
256
|
def __getstate__(self) -> tuple:
|
|
258
257
|
...
|
|
259
258
|
@typing.overload
|
|
260
|
-
def __init__(self, k:
|
|
259
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
261
260
|
...
|
|
262
261
|
@typing.overload
|
|
263
|
-
def __init__(self, k:
|
|
262
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
264
263
|
...
|
|
265
264
|
def __setstate__(self, arg0: tuple) -> None:
|
|
266
265
|
...
|
|
267
266
|
def deserialize(self, serialized: str) -> None:
|
|
268
267
|
...
|
|
269
|
-
def loss(self, error:
|
|
268
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
270
269
|
...
|
|
271
270
|
def serialize(self) -> str:
|
|
272
271
|
...
|
|
273
|
-
def weight(self, error:
|
|
272
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
274
273
|
"""
|
|
275
274
|
produce a weight vector according to an error vector and the implemented robust function
|
|
276
275
|
"""
|
|
@@ -286,59 +285,59 @@ class Null(Base):
|
|
|
286
285
|
...
|
|
287
286
|
def deserialize(self, serialized: str) -> None:
|
|
288
287
|
...
|
|
289
|
-
def loss(self, error:
|
|
288
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
290
289
|
...
|
|
291
290
|
def serialize(self) -> str:
|
|
292
291
|
...
|
|
293
|
-
def weight(self, error:
|
|
292
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
294
293
|
"""
|
|
295
294
|
produce a weight vector according to an error vector and the implemented robust function
|
|
296
295
|
"""
|
|
297
296
|
class Tukey(Base):
|
|
298
297
|
@staticmethod
|
|
299
|
-
def Create(k:
|
|
298
|
+
def Create(k: typing.SupportsFloat) -> Tukey:
|
|
300
299
|
...
|
|
301
300
|
def __getstate__(self) -> tuple:
|
|
302
301
|
...
|
|
303
302
|
@typing.overload
|
|
304
|
-
def __init__(self, k:
|
|
303
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
305
304
|
...
|
|
306
305
|
@typing.overload
|
|
307
|
-
def __init__(self, k:
|
|
306
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
308
307
|
...
|
|
309
308
|
def __setstate__(self, arg0: tuple) -> None:
|
|
310
309
|
...
|
|
311
310
|
def deserialize(self, serialized: str) -> None:
|
|
312
311
|
...
|
|
313
|
-
def loss(self, error:
|
|
312
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
314
313
|
...
|
|
315
314
|
def serialize(self) -> str:
|
|
316
315
|
...
|
|
317
|
-
def weight(self, error:
|
|
316
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
318
317
|
"""
|
|
319
318
|
produce a weight vector according to an error vector and the implemented robust function
|
|
320
319
|
"""
|
|
321
320
|
class Welsch(Base):
|
|
322
321
|
@staticmethod
|
|
323
|
-
def Create(k:
|
|
322
|
+
def Create(k: typing.SupportsFloat) -> Welsch:
|
|
324
323
|
...
|
|
325
324
|
def __getstate__(self) -> tuple:
|
|
326
325
|
...
|
|
327
326
|
@typing.overload
|
|
328
|
-
def __init__(self, k:
|
|
327
|
+
def __init__(self, k: typing.SupportsFloat) -> None:
|
|
329
328
|
...
|
|
330
329
|
@typing.overload
|
|
331
|
-
def __init__(self, k:
|
|
330
|
+
def __init__(self, k: typing.SupportsFloat, reweight: Base.ReweightScheme) -> None:
|
|
332
331
|
...
|
|
333
332
|
def __setstate__(self, arg0: tuple) -> None:
|
|
334
333
|
...
|
|
335
334
|
def deserialize(self, serialized: str) -> None:
|
|
336
335
|
...
|
|
337
|
-
def loss(self, error:
|
|
336
|
+
def loss(self, error: typing.SupportsFloat) -> float:
|
|
338
337
|
...
|
|
339
338
|
def serialize(self) -> str:
|
|
340
339
|
...
|
|
341
|
-
def weight(self, error:
|
|
340
|
+
def weight(self, error: typing.SupportsFloat) -> float:
|
|
342
341
|
"""
|
|
343
342
|
produce a weight vector according to an error vector and the implemented robust function
|
|
344
343
|
"""
|